Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
Quantum Physics: Look But Don't Touch
by Staff Writers
Madrid, Spain (SPX) May 15, 2013


File image.

Improving our understanding of the human brain, gathering insights into the origin of our universe through the detection of gravitational waves, or optimizing the precision of GPS systems- all are difficult challenges to master because they require the ability to visualize highly fragile elements, which can be terminally damaged by any attempt to observe them.

Now, quantum physics has provided a solution. In an article published in Nature Photonics, researchers at the Institute of Photonic Sciences (ICFO) report the observation of a highly fragile and volatile body through a new quantum-mechanical measurement technique.

Researchers from the group led by Morgan Mitchell applied the so-called "quantum non-demolition measurement" to a tiny cloud of atoms. They were able to observe the spinning of the electrons in the atoms, and more importantly, the atom cloud was not disturbed in the process.

It is the first time quantum non-demolition measurement has been demonstrated with any material object. The same method could be extended to permit the observation of individual atoms.

In the experiment, scientists prepared light pulses with photons in complementary states, and then sent them through the cloud of atoms, measuring their polarization on the way out.

"A first measurement gives us information reflecting the action of the first light pulse. A second measurement, taken with photons in a complementary state from the first, cancels the influence of the preliminary pulse, allowing us to observe the original characteristics of the object," explains Dr. Robert Sewell, researcher at ICFO. This process has enabled the team to gather precise information on the magnetic field of the atom's surroundings.

The information obtained exceeds the so-called "standard quantum limit", which quantifies the maximum amount of information obtainable with any traditional probing.

Two achievements made this possible. On one hand, researchers were able to structure the observation so that the noise resulting from the visualization was shifted away from the object being measured and into a different variable.

In addition, they introduced quantum statistical correlations among the atoms so that they were able to gather in one measurement what previously they needed a collection of measurements to observe. "This experiment provides rigorous proof of the effectiveness of quantum physics for measuring delicate objects" concludes Sewell.

Link to the paper.

.


Related Links
ICFO-The Institute of Photonic Sciences
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Scientists demonstrate pear shaped atomic nuclei
Liverpool UK (SPX) May 14, 2013
Scientists at the University of Liverpool have shown that some atomic nuclei can assume the shape of a pear which contributes to our understanding of nuclear structure and the underlying fundamental interactions. Most nuclei that exist naturally are not spherical but have the shape of a rugby ball. While state-of-the-art theories are able to predict this, the same theories have predicted t ... read more


TIME AND SPACE
Scientists uncover the fundamental property of astatine, the rarest atom on Earth

Heady mathematics

Cornstarch proves to be worth its weight in gold

One order of steel; hold the greenhouse gases

TIME AND SPACE
US Navy and Lockheed Martin Deliver Newest Secure Communications Satellite for Mobile Users

Harris picks up Brunei order for Falcon III

Department of Defense looking to allow Apple, Samsung devices

DARPA Seeks Clean-Slate Ideas For Mobile Ad Hoc Networks

TIME AND SPACE
ATV Albert Einstein installed on Ariane 5 launcher

ILS and EchoStar Sign Launch Contract

NASA Awards Contract to Modify Mobile Launcher

Angara Rocket Launch Delayed to 2014

TIME AND SPACE
SES Techcom To Support Aircraft Tracking From Space

Facebook eyes $1bn deal for GPS app Waze

Orbcomm Signs Seven New Customers In Transportation And Logistics Industry

Turn your satnav idea into business

TIME AND SPACE
EADS posts profit leap as Airbus orders soar

EADS says Pentagon ending helicopter program

Boeing Brings B-52 into Digital Age with Significant Communications Upgrade

Flyers don't turn off phones in planes: survey

TIME AND SPACE
New magnetic graphene may revolutionize electronics

Flawed Diamonds Promise Sensory Perfection

Scientists develop device for portable, ultra-precise clocks and quantum sensors

Quantum optics with microwaves

TIME AND SPACE
Vietnam to launch second remote sensing satellite into orbit by 2017

e2v image sensors launched into space on board Vietnam's first optical Earth observation satellite

Skybox Imaging Announces Strategic Partnership with Japan Space Imaging

ESA's next Earth Explorer satellite Will Map The Tropics

TIME AND SPACE
PCBs are everywhere

Nations agree to phase out toxic chemical HBCD

Toxic waste sites cause healthy years of life lost

Progress in introducing cleaner cook stoves for billions of people worldwide




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement