Space Industry and Business News  
TECH SPACE
Proposed engineering method could help make buildings and bridges safer
by Staff Writers
Ishikawa, Japan (SPX) Jan 18, 2019

Interfacial-dislocation-controlled deformation and fracture in nanolayered composites. The spacing of the interfacial dislocations, which accommodate misfit strain between the ferrite and cementite phases, determines the phase stress and the interfacial dislocation network in the nanolayered-pearlite models. Various modes of initially activated inelastic-deformation are observed according to interfacial dislocation spacing because the phase stress and the interfacial dislocation network influence the resolved shear/normal stress and the critical resolved shear/normal stress for each inelastic-deformation mode, respectively. Hence, interfacial dislocation spacings can be a key parameter that controls the ductility of drawn pearlitic steels and leads us toward higher ductility of drawn pearlitic steels.

Pearlitic steel, or pearlite, is one of the strongest materials in the world and can be made into thin and long wires. The strength of pearlite allows it to sustain very heavy weight, however what makes it special is its ability to stretch and contract without breaking (ductility).

Ductility is important for building bridges, as even if a material is strong enough to support heavy weight, it can break when subjected to stretching if it is not ductile enough. This is why structures made of concrete can still collapse during violent earthquakes. Pearlite is used for suspension bridges to help them withstand strong shaking while supporting heavy weight.

Pearlite is made of alternating nanolayers of cementite and ferrite. The cementite helps make it strong, while the ferrite helps make it ductile. However, until now researchers did not know exactly how the two worked together to give pearlite its special quality, or better yet, how to control their working together to engineer an even better material.

Researchers at Kanazawa University have discovered that disruptions, or dislocations, in the arrangement of atoms along the interface between a cementite and a ferrite layer protect the cementite from fracturing under stretching or compression. Their study was published last month in the journal Acta Materialia.

"The spacing between dislocations on a cementite-ferrite interface determines how deformation travels through the nanolayers", the authors say. "Manipulating the dislocation structure and the distance between dislocations can control the ductility of pearlite."

The researchers used computer simulations to see how a pearlite wire would deform with dislocations of different orientations and different distances between them along the ferrite-cementite interface. They found that particular dislocation structures and distances could stop cracks from forming or spreading throughout the cementite layer.

"Increasing the ductility of pearlite means it can resist more shearing stress without breaking or tearing," say the authors. This may lead to a new generation of materials for constructing buildings and bridges that can withstand stronger earthquakes.

The researchers believe manipulating dislocations consisting of entire clusters of atoms could be a general technique for enhancing not only ductility but other properties of materials to meet particular engineering and construction needs.

Research paper


Related Links
Kanazawa University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Engineers detail bird feather properties that could lead to better adhesives
San Diego CA (SPX) Jan 17, 2019
You may have seen a kid play with a feather, or you may have played with one yourself: Running a hand along a feather's barbs and watching as the feather unzips and zips, seeming to miraculously pull itself back together. That "magical" zipping mechanism could provide a model for new adhesives and new aerospace materials, according to engineers at the University of California San Diego. They detail their findings in the Jan. 16 issue of Science Advances in a paper titled "Scaling of bird wings and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
A new twist on a mesmerizing story

Discovery of single atom structure leads to more efficient catalyst

Advisian Digital and Aurora Labs unveil 3D printing solution

Virtual reality makes splash, but not ready for prime time

TECH SPACE
Honeywell and GetSAT win multi-million dollar deal with US Government

Hughes to supply BGAN terminals for Space and Naval Warfare Systems Center

Hughes India and Sterlite Tech enable Satcom connectivity for Indian navy

DARPA awards 6 teams during final Spectrum Collaboration Challenge Qualifier

TECH SPACE
TECH SPACE
US Air Force contracts Lockheed Martin to continue GPS ground control supprt

GPS-denied navigation on small unmanned helicopters

China's BeiDou officially goes global

First GPS III satellite launched, moving toward operational orbit

TECH SPACE
Britain declares it's F-35B fighters are ready for combat

US objections stop Croatia buying Israeli fighter jets: minister

Air Force accepts first KC-46A Pegasus tanker

Air Force conducts first F-35 test flight led by female pilot

TECH SPACE
Ultra ultrasound to transform new tech

Researchers discover molecules 'spin flip' from magnetic to non-magnetic forms dynamically

Arbitrary quantum channel simulation for a superconducting qubit

Five thousand times faster than a computer

TECH SPACE
UK Space Agency COMPASS project aims to to improve crop yields for Mexican farmers

Satellite images reveal global poverty

New nanosatellite system captures better imagery at lower cost

Declining particulate pollution led to increased ozone pollution in China

TECH SPACE
Thailand to make it rain as pollution chokes Bangkok

How dangerous is microplastic?

India launches new bid to battle dirty air

Safer mining practices reduce hazardous exposures in small-scale mining in Nigeria









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.