Space Industry and Business News  
SOLAR DAILY
Producing highly efficient LEDs based on 2D perovskite films
by Staff Writers
Hong Kong (SPX) Mar 11, 2021

stock illustration only

Energy-efficient light-emitting diodes (LEDs) have been used in our everyday life for many decades. But the quest for better LEDs, offering both lower costs and brighter colours, has recently drawn scientists to a material called perovskite. A recent joint-research project co-led by the scientist from City University of Hong Kong (CityU) has now developed a 2D perovskite material for the most efficient LEDs.

From household lighting to mobile phone displays, from pinpoint lighting needed for endoscopy procedures to light source to grow vegetables in Space, LEDs are everywhere. Yet current high-quality LEDs still need to be processed at high temperatures and using elaborated deposition technologies - which make their production cost expensive.

Scientists have recently realised that metal halide perovskites - semiconductor materials with the same structure as calcium titanate mineral, but with another elemental composition - are extremely promising candidates for next-generation LEDs. These perovskites can be processed into LEDs from solution at room temperature, thus largely reducing their production cost. Yet, the electro-luminescence performance of perovskites in LEDs still has room for improvement.

Led by Professor Andrey Rogach, Chair Professor at the Department of Materials Science and Engineering at CityU, and his collaborator Professor Yang Xuyong from Shanghai University, the team has found a kind of dimmer switch: they could turn one light emission from perovskites to a brighter level!

They worked with two-dimensional (2D) perovskites (also known as Ruddlesden-Popper perovskites) and succeeded to realise very efficient and bright LEDs, with best-reported performance on both current efficiency and external quantum efficiency for devices based on this kind of perovskites. This work has now put the perovskite LEDs close on the heels of current commercial display technologies, such as organic LEDs.

The key to the powerful change lies in the addition of around 10% of a simple organic molecule called methanesulfonate (MeS).

In this study, the 2D perovskites used by the team have a nanometre level thickness. The MeS reconstructs the structure of the 2D perovskite nanosheets, while at the same time enhancing exciton energy transfer between sheets of different thicknesses. Both of these changes have greatly enhanced the electro-luminescence of the thicker, green-emitting perovskite sheets within the 2D structure.

The MeS is also useful in reducing the number of defects in the 2D perovskite structure. During the process of light production, where radiative recombination took place, part of the excitons required for the process will be "wasted" in the non-radiative recombination which produces no light. MeS reduces the number of uncoordinated Pb2+ cations, the cause for excitons to undergo the non-radiative recombination, making sure more excitons participating in light production.

The results of the research for producing better LEDs has been encouraging. The brightness of 13,400 candela/m2 at a low applied voltage of 5.5 V, and external quantum efficiency of 20.5% were recorded. This is close to the maximum that many existing LED technologies can achieve, and has almost doubled the external quantum efficiency level of 10.5% reported in their previous study two years ago.

"My CityU team has built-up its expertise on perovskite materials to a very high level in a relatively short period of time, thanks to funding support from Senior Research Fellowship by the Croucher Foundation. And already we see the benefit, especially in the outcomes detailed in this latest publication," said Professor Rogach.

"The achieved high brightness, excellent colour purity, and commercial grade operating efficiency mark 2D perovskites as extremely attractive materials for future commercial LEDs, and potentially also display technology. It's a tangible outcome from both fundamental and applied research into novel nano-scale materials" he adds.

Research Report: "Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices"


Related Links
City University Of Hong Kong
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
White Pine Renewables completes largest floating solar farm in the US
Healdsburg CA (SPX) Mar 08, 2021
White Pine Renewables is pleased to announce the completion of the Healdsburg Floating Solar Project. The project will deliver clean energy to the City of Healdsburg, Calif., under a 25-year power purchase agreement. At 4.78 MW(dc) and sited on ponds at the City's wastewater treatment plant, the project is the largest floating solar project completed in the United States to date. The electricity generated by the project will cover approximately 8% of the City's total energy demand and is an import ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Lights on for silicon photonics

Highly porous synthetic melanin can protect skin from toxins, radiation

Nuclear engineering researchers develop new resilient oxide dispersion strengthened alloy

ISS Leaks May Be Caused by Metal Fatigue, Micrometeorite Impact, Source Says

SOLAR DAILY
SES Government solutions provides high-throughput loopback services to US Dept of Defense

USAF: Anti-jamming tests of military communications satellites a success

India to upgrade military comms with advanced radios to boost net-centric warfare capability

Northrop Grumman gets $3.6B for work on Air Force communications node

SOLAR DAILY
SOLAR DAILY
A better way to measure acceleration

China Satellite Navigation Conference to highlight spatiotemporal data

Latest progress in China's BeiDou Navigation Satellite System

BAE Systems announces $247M contract for M-code GPS receivers

SOLAR DAILY
Customising individual flight routes for more climate friendly outcomes

Air Force testing prototype shelters for B-21 Raider

Marines' F/A-18 Hornets finish final aircraft carrier deployment

HyPoint unveils breakthrough hydrogen fuel cell prototype for aviation and urban air mobility

SOLAR DAILY
EU wants to double microchip share by 2030

New microcomb could help discover exoplanets and detect diseases

A quantum internet is closer to reality, thanks to this switch

Intel hit with $2.2 bn verdict in US patent trial

SOLAR DAILY
A mission for Earth's future

NASA, LAPAN launch Ozonesonde from Indonesian site

NASA Awards Launch Service Contract for TROPICS Mission to Study Storm Processes

Scientists begin building highly accurate digital twin of our planet

SOLAR DAILY
71kg of waste found in stray Indian cow's stomach

EU court raps Britain for air pollution

Lebanese clear tar pollution from turtle beach

NASA studies impact of reduced African grassland fires on air quality improvements









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.