Space Industry and Business News  
NANO TECH
Probing Atomic Chicken Wire

Jiamin Xue, Philippe Jacquod and Brian LeRoy (left to right) with the scanning tunneling microscope they use to study graphene, the thinnest material on Earth. Credit: Patrick McArdle/UANews
by Staff Writers
Boston MA (SPX) Mar 09, 2011
Graphene - a sheet of carbon atoms linked in a hexagonal, chicken wire structure - holds great promise for microelectronics. Only one atom thick and highly conductive, graphene may one day replace conventional silicon microchips, making devices smaller, faster and more energy-efficient.

In addition to potential applications in integrated circuits, solar cells, miniaturized bio devices and gas molecule sensors, the material has attracted the attention of physicists for its unique properties in conducting electricity on an atomic level.

Otherwise known as pencil "lead," graphene has very little resistance and allows electrons to behave as massless particles like photons, or light particles, while traveling through the hexagonal grid at very high speeds.

The study of the physical properties and potential applications of graphene, however, has suffered from a lack of suitable carrier materials that can support a flat graphene layer while not interfering with its electrical properties.

Researchers in the University of Arizona's physics department along with collaborators from the Massachusetts Institute of Technology and the National Materials Science Institute in Japan have now taken an important step forward toward overcoming those obstacles.

They found that by placing the graphene layer on a material almost identical in structure, instead of the commonly used silicon oxide found in microchips, they could significantly improve its electronic properties.

Substituting silicon wafers with boron nitride, a graphene-like structure consisting of boron and nitrogen atoms in place of the carbon atoms, the group was the first to measure the topography and electrical properties of the resulting smooth graphene layer with atomic resolution.

The results are published in the advance online publication of Nature Materials.

"Structurally, boron nitride is basically the same as graphene, but electronically, it's completely different," said Brian LeRoy, an assistant professor of physics and senior author of the study. "Graphene is a conductor, boron nitride is an insulator."

"We want our graphene to sit on something insulating, because we are interested in studying the properties of the graphene alone. For example, if you want to measure its resistance, and you put it on metal, you're just going to measure the resistance of the metal because it's going to conduct better than the graphene."

Unlike silicon, which is traditionally used in electronics applications, graphene is a single sheet of atoms, making it a promising candidate in the quest for ever smaller electronic devices. Think going from a paperback to a credit card.

"It's as small as you can shrink it down," LeRoy said. "It's a single layer, you'll never get half a layer or something like that. You could say graphene is the ultimate in making it small, yet it 's still a good conductor."

Stacked upon each other, 3 million sheets of graphene would amount to only 1 millimeter. The thinnest material on Earth, graphene brought the 2010 Nobel Prize to Andre Geim and Konstantin Novoselov, who were able to demonstrate its exceptional properties with relation to quantum physics.

"Using a scanning tunneling microscope, we can look at atoms and study them," he added. "When we put graphene on silicon oxide and look at the atoms, we see bumps that are about a nanometer in height."

While a nanometer - a billionth of a meter - may not sound like much, to an electron whizzing along in a grid of atoms, it's quite a bump in the road.

"It's basically like a piece of paper that has little crinkles in it," LeRoy explains. "But if you put the paper, in this case the graphene, on boron nitride, it's much flatter. It smooths out the bumps by an order of magnitude."

LeRoy admits the second effect achieved by his research team is a bit harder to explain.

"When you have graphene sitting on silicon oxide, there are trapped electric charges inside the silicon oxide in some places, and these induce some charge in the overlying graphene. You get quite a bit of variation in the density of electrons. If graphene sits on boron nitride, the variation is two orders of magnitude less."

In his lab, LeRoy demonstrates the first - and surprisingly low-tech - step in characterizing the graphene samples: He places a tiny flake of graphite - the stuff that makes up pencil "lead" - on sticky tape, folds it back on itself and peels it apart again, in a process reminiscent of a Rorschach Test.

"You fold this in half," he explained, "and again, and again, until it gets thin. Graphene wants to peel off into these layers, because the bonds between the atoms in the horizontal layer are strong, but weak between atoms belonging to different layers. When you put this under an optical microscope, there will be regions with one, two, three, four or more layers. Then you just search for single-layer ones using the microscope."

"It's hard to find the sample because it's very, very small," said Jiamin Xue, a doctoral student in LeRoy's lab and the paper's leading author. "Once we find it, we put it between two gold electrodes so we can measure the conductance."

To measure the topography of the graphene surface, the team uses a scanning tunneling microscope, which has an ultrafine tip that can be moved around.

"We move the tip very close to the graphene, until electrons start tunneling to it," Xue explained. "That's how we can see the surface. If there is a bump, the tip moves up a bit."

For the spectroscopic measurement, Xue holds the tip at a fixed distance above the sample. He then changes the voltage and measures how much current flows as a function of that voltage and any given point across the sample. This allows him to map out different energy levels across the sample.

"You want as thin an insulator as possible," LeRoy added. "The initial idea was to pick something flat but insulating. Because boron nitride essentially has the same structure as graphene, you can peel it into layers in the same way. Therefore, we use a metal as a base, put a thin layer of boron nitride on it and then graphene on top."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of Arizona
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
Ultra Fast Photodetectors Out Of Carbon Nanotubes
Munich, Germany (SPX) Mar 08, 2011
Carbon nanotubes have a multitude of unusual properties which make them promising candidates for optoelectronic components. However, so far it has proven extremely difficult to analyze or influence their optic and electronic properties. A team of researchers headed by Professor Alexander Holleitner, a physicist at the Technische Universitaet Muenchen and member of the Cluster of Excellence ... read more







NANO TECH
Rare earths to be refined in Malaysia

YouTube buys US web television company

Nokia Siemens delays Motorola purchase indefinitely

UK Technology Scans The Skies For Space Hazards

NANO TECH
LockMart Wins Role On Navy C4ISR Services Contract

ONR Moves A Modular Space Communications Asset Into Unmanned Aircraft For Marines

Northrop Grumman Next-Gen FBCB2 System Approved For Fielding

Boeing To Demonstrate Aviation Command And Control Subsystem For US Marine Corps

NANO TECH
New Dawn Arrives At Spaceport

ISRO Likley To Launch Resourcesat-2 In April

United Launch Alliance Launches Second OTV Mission

USAF Launches Second X-37B Test Platform

NANO TECH
Improved Method Developed To Locate Ships In Storms

Google Maps now helps users beat traffic jams

Russia To Start Operating New Glonass-K Satellite By Year End

N. Korea jammed S. Korea GPS devices: report

NANO TECH
Cathay Pacific orders 27 Airbus and Boeing planes

EU sets CO2 limit for airlines

EADS returns to profit on jet sales

Boeing wins hefty plane deals in China

NANO TECH
New Generation Of Optical Integrated Devices For Future Quantum Computers

JQI Physicists Demonstrate Coveted Spin-Orbit Coupling In Atomic Gases

New MIT Developments In Quantum Computing

Development Team Achieves One Terabit per Second Data Rate On Single Integrated Photonic Chip

NANO TECH
GOCE Delivers On Its Promise

NASA reels from climate science setbacks

NASA's Bolden defends Earth science

New Day Dawns For Satellite To Study Earth's Ozone Layer

NANO TECH
Battle on paradise Philippine island

Philippines disposes of Cold War-era US bombs

Death sentences for Indian train burners

Pollution a threat to China's growth


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement