Space Industry and Business News
ENERGY TECH
Probe where the protons go to develop better fuel cells
A computer rendering of the experiment. Using synchrotron radiation, and simulations via supercomputers and machine learning on top of thermogravimetric analysis, researchers were able to observe where protons go in their perovskite based SOFC electrolyte.
Probe where the protons go to develop better fuel cells
by Staff Writers
Fukuoka, Japan (SPX) Mar 29, 2023

Solid oxide fuel cells, or SOFC, are a type of electrochemical device that generates electricity using hydrogen as fuel, with the only 'waste' product being water. Naturally, as we strive to reduce our carbon output and mitigate the casualties of the climate crisis, both business and academia have taken major interest in the development of SOFCs.

In what can potentially accelerate the development of more efficient SOFCs, a research team led by Kyushu University has uncovered the chemical innerworkings of a perovskite-based electrolyte they developed for SOFCs. The team combined synchrotron radiation analysis, large-scale simulations, machine learning, and thermogravimetric analysis, to uncover the active site of where hydrogen atoms are introduced within the perovskite lattice in its process to produce energy. The results were published in journal Chemistry of Materials.

At the fundamental level, a fuel cell is just a device that generates electricity by facilitating the split of a hydrogen atom into its positively charged proton and negatively charged electron. The electron is used to generate electricity, and then comes together with a proton and oxygen and produces water as a 'waste' product.

The material at the literal center of all this is the electrolyte. This material acts an atomic sieve that facilitates transfer of specific atoms across the fuel cell. Depending on the type of fuel cell, those atoms could be protons or oxygen.

While SOFCs may be an uncommon term to many people, the technology has already been commercialized in generators for single family homes. Nonetheless, they remain expensive, with one of the largest obstacles being its high operating temperature.

"Conventional SOFCs need to be at 700-1000? for the electrolyte to perform efficiently." explains Professor Yoshihiro Yamazaki at Kyushu University's Platform of Inter-/Transdisciplinary Energy Research, who led the research. "Naturally, there's a global race to develop SOFC electrolytes that can operate at lower temperatures of around 300-450?. One such promising materials are perovskites."

Perovskites are a category of material with a specific crystalline structure that allows them to possess unique physical, optical, and even electrical properties. Moreover, since they can be artificially synthesized with different atoms, a large body of research focuses on developing and testing a near infinite number of possible perovskites.

One such case is in developing better SOFC electrolytes.

"In our past work we developed a Barium and Zirconium based perovskite with the chemical composition BaZrO3. By replacing the Zr site with a high concentration of Scandium, or Sc, we succeeded in making a high-performance electrolyte that can function at our target temperature of 400?," explains Yamazaki. "Of course, that was only a part of what we wanted to find. We also were investigating a question that hadn't been solved for over three decades: where in the electrolyte's lattice do the protons get introduced?"

Probing the inner workings of SOFCs had been difficult due to its high operating temperature and changing pressure from water, the fuel cell's source of hydrogen.

To get around these issues, the team conducted X-ray absorption spectroscopy experiments on their perovskite electrolyte using synchrotron radiation-the electromagnetic radiation emitted from particle accelerators-while the fuel cell was active at around 400?.

"These results gave us insight into where in the material's chemical structure the protons would be incorporated. From there we applied machine learning, and using a supercomputer calculated possible structural configurations of the material," continued Yamazaki. "By carefully comparing the predicted results with experimental data we were able to clarify the structural changes the electrolyte undertakes when active."

"Now that we have the fundamental innerworkings of the electrolyte we can being optimizing its nanostructures and even propose new materials that can lead to more efficient fuel cells, and even ones that work at wider temperature ranges," concludes Yamazaki.

Research Report:Probing Local Environments of Oxygen Vacancies Responsible for Hydration in Sc-Doped Barium Zirconates at Elevated Temperatures: In Situ X-ray Absorption Spectroscopy, Thermogravimetry, and Active Learning Ab Initio Replica Exchange Monte Carlo Simulations

Related Links
Kyushu University
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
UTEP joins project to 3D print batteries from lunar and Martian soil
El Paso TX (SPX) Mar 27, 2023
The University of Texas at El Paso has joined a project led by NASA to leverage 3D-printing processes with the aim of manufacturing rechargeable batteries using lunar and Martian regolith, which is the top layer of materials that covers the surface of the moon and Mars. "UTEP is a national leader in additive manufacturing for space applications," said Kenith Meissner, Ph.D., dean of the UTEP College of Engineering. "I congratulate the team of UTEP researchers involved in this important work. I am ... read more

ENERGY TECH
OpenAI's ChatGPT blocked in Italy: privacy watchdog

Big E3 videogame expo in US is canceled

WVU researchers explore alternative sources to help power space

What can we do about all the plastic waste

ENERGY TECH
Northrop Grumman demonstrates platform agnostic in-flight connectivity for USAF

Silvus Technologies unveils Spectrum Dominance

Rensselaer researcher breaks through the clouds to advance satellite communication

Space Systems Command demonstrates satellite anti-jam capability

ENERGY TECH
ENERGY TECH
Telit Cinterion adds Dual-Band GNSS Positioning to AIROHA AG3335 Chipsets

Monogoto teams with Skylo and SODAQ to deliver NB-IoT satellite asset tracking

Quectel announces CC200A-LB satellite module for IoT

Topcon further expands MC-X Platform with all-new GNSS Option

ENERGY TECH
Airbus to open 2nd plane assembly line in China, double output

European aviation sector fears CO2 rules could clip its wings

Amsterdam airport to ban private jets, night flights

'Unbearable': Vietnam airport construction dust blankets homes, school

ENERGY TECH
China calls for WTO review of US-led chip export restrictions

Chinese FM says Japanese chip curbs to drive Beijing's self-reliance

China launches security probe into US chipmaker Micron

Japan unveils export control plans for chip equipment

ENERGY TECH
Improving the efficiency of maps

Ozone-depleting CFCs hit record despite ban: study

Surprise effect: Methane cools even as it heats

Joint NASA, CNES water-tracking satellite reveals first stunning views

ENERGY TECH
Toothpaste tablets and syrup on tap: US refill shops cut the container

Microplastic pollution impairs seabird gut health

Dust storms cause air pollution spike across north China

Scientists make 'disturbing' find on remote island: plastic rocks

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.