Space Industry and Business News  
ENERGY TECH
Predictive model reveals function of promising energy harvester device
by Staff Writers
Troy NY (SPX) Nov 02, 2020

stock illustration only

A small energy harvesting device that can transform subtle mechanical vibrations into electrical energy could be used to power wireless sensors and actuators for use in anything from temperature and occupancy monitoring in smart environments, to biosensing within the human body.

In research recently published online in the Journal of Micromechanics and Microengineering, engineers at Rensselaer Polytechnic Institute developed a predictive model for such a device, which will allow researchers to better understand and optimize its functionalities.

"Sooner or later these harvesters will replace batteries, reducing associated environmentally hazardous waste and maintenance costs," said Diana-Andra Borca-Tasciuc, a professor of mechanical, aerospace, and nuclear engineering at Rensselaer, who led this research effort.

She was joined by John Tichy, a professor of mechanical, aerospace, and nuclear engineering at Rensselaer, and Jinglun Li, a graduate student in mechanical engineering who designed the model.

This most recent work builds upon research that Borca-Tasciuc's lab published in the Journal of Micromechanics and Microengineering in 2016. At that time, the team created and tested an energy harvesting device made of silicon both in the lab and on a vibrating HVAC duct.

The device was able to convert mechanical energy into electricity, as hoped, but at the time, the team wasn't able to fully explain its experimental results, which exceeded expectations. This new model answers those questions and will allow the researchers to optimize the device in order to generate more power.

A key finding, Borca-Tasciuc said, was when Li realized that parts of the device deform after mechanical impact - which is triggered by vibrations. Li then created a predictive model using a series of equations that represent the dynamics of the device by modeling its mass coupled with the movement of a series of springs. These motion equations were critical to determining how vibrational motion translates to voltage. According to this paper, the predictions shown by the model were consistent with experimental results that the team previously gathered.

"This model laid a solid foundation for parametric study and helps to push the boundaries of output power through design optimization," Li said. "The high-power device developed by our group, together with its accurate analytical model, is an advancement of energy harvesting and will enable silicon-based autonomous green power supply at a microscale in the near future."

Research paper


Related Links
Rensselaer Polytechnic Institute
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Infrared light antenna powers molecular motor
Groningen, Netherlands (SPX) Oct 29, 2020
Light-controlled molecular motors can be used to create functional materials, to provide autonomous motion or in systems that can respond on command, for example, to open drug-containing vesicles. For biological applications, this requires the motors to be driven by low-energy, low-intensity light that penetrates tissue. Chemists at the University of Groningen designed a rotary motor that is efficiently powered by near-infrared light, through adding an antenna to the motor molecule. The design and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Concrete structure's lifespan extended by a carbon textile

Microsoft rides cloud to higher earnings

Researchers break magnetic memory speed record

NorthStar building world's first satellite constellation to combat imminent threat of space collisions

ENERGY TECH
Optimum Technologies to providce Northrop Grumman with protected tactical satcom payload structures

Air Force 'Orange Flag' exercise tests data transfers in combat

WGS-11+ Satellite Completes Preliminary Design Review

Defense Dept. awards $600M in contracts for 5G testing at five bases

ENERGY TECH
ENERGY TECH
China's self-developed BDS sees thriving applications

GPS-enabled decoy eggs may help track, catch sea turtle egg traffickers

Fourth GPS 3 Satellite Encapsulated Ahead of Launch

Government to explore new ways of delivering 'sat nav' for the UK

ENERGY TECH
Berlin's much delayed new airport welcomes first flights

Berlin's ill-fated new airport finally ready for take-off

Aircraft noise measured on the ground and on the aircraft synchronously for the first time

Marines form new F-35B Fighter Attack Squadron in Japan

ENERGY TECH
Marvell to acquire Inphi in latest chipmaker tie-up

AMD buys computer chip rival Xilinx for $35 billion

Optical wiring for large quantum computers

Intel shares tumble as pandemic hits results

ENERGY TECH
SEOSAT-Ingenio: fully loaded

Satellite Data Meets Cellular DNA for Species of Interest

GHGSat reports smallest methane emission ever detected from space with microsatellite

A new way of looking at the Earth's interior

ENERGY TECH
Air pollution linked to 15 percent of coronavirus deaths: study

Indian farmers step up illegal fires as Delhi air crisis worsens

Trump calls India, China air 'filthy'

Death of sea life off Russia peninsula 'caused by algae'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.