Space Industry and Business News  
ENERGY TECH
Power-free system harnesses evaporation to keep items cool
by David L. Chandler for MIT News
Boston MA (SPX) Nov 12, 2020

MIT researchers have developed a two-layer passive cooling system, made of hydrogel and aerogel, that can keep foods and pharmaceuticals cool for days without the need for electricity. In this photo showing a close-up of the two-layer material, the upper layer consists of aerogel and the bottom layer of hydrogel.

Camels have evolved a seemingly counterintuitive approach to keeping cool while conserving water in a scorching desert environment: They have a thick coat of insulating fur. Applying essentially the same approach, researchers at MIT have now developed a system that could help keep things like pharmaceuticals or fresh produce cool in hot environments, without the need for a power supply.

Most people wouldn't think of wearing a camel-hair coat on a hot summer's day, but in fact many desert-dwelling people do tend to wear heavy outer garments, for essentially the same reason. It turns out that a camel's coat, or a person's clothing, can help to reduce loss of moisture while at the same time allowing enough sweat evaporation to provide a cooling effect. Tests have showed that a shaved camel loses 50 percent more moisture than an unshaved one, under identical conditions, the researchers say.

The new system developed by MIT engineers uses a two-layer material to achieve a similar effect. The material's bottom layer, substituting for sweat glands, consists of hydrogel, a gelatin-like substance that consists mostly of water, contained in a sponge-like matrix from which the water can easily evaporate. This is then covered with an upper layer of aerogel, playing the part of fur by keeping out the external heat while allowing the vapor to pass through.

Hydrogels are already used for some cooling applications, but field tests and detailed analysis have shown that this new two-layer material, less than a half-inch thick, can provide cooling of more than 7 degrees Celsius for five times longer than the hydrogel alone - more than eight days versus less than two.

The findings are being reported in a paper in the journal Joule, by MIT postdoc Zhengmao Lu, graduate students Elise Strobach and Ningxin Chen, Research Scientist Nicola Ferralis and Professor Jeffrey Grossman, head of the Department of Materials Science and Engineering.

The system, the researchers say, could be used for food packaging to preserve freshness and open up greater distribution options for farmers to sell their perishable crops. It could also allow medicines such as vaccines to be kept safely as they are delivered to remote locations. In addition to providing cooling, the passive system, powered purely by heat, can reduce the variations in temperature that the goods experience, eliminating spikes that can accelerate spoilage.

Ferralis explains that such packaging materials could provide constant protection of perishable foods or drugs all the way from the farm or factory, through the distribution chain, and all the way to the consumer's home. In contrast, existing systems that rely on refrigerated trucks or storage facilities may leave gaps where temperature spikes can happen during loading and unloading. "What happens in just a couple of hours can be very detrimental to some perishable foods," he says.

The basic raw materials involved in the two-layer system are inexpensive - the aerogel is made of silica, which is essentially beach sand, cheap and abundant. But the processing equipment for making the aerogel is large and expensive, so that aspect will require further development in order to scale up the system for useful applications. But at least one startup company is already working on developing such large-scale processing to use the material to make thermally insulating windows.

The basic principle of using the evaporation of water to provide a cooling effect has been used for centuries in one form or another, including the use of double-pot systems for food preservation. These use two clay pots, one inside the other, with a layer of wet sand in between. Water evaporates from the sand out through the outer pot, leaving the inner pot cooler. But the idea of combining such evaporative cooling with an insulating layer, as camels and some other desert animals do, has not really been applied to human-designed cooling systems before.

For applications such as food packaging, the transparency of the hydrogel and aerogel materials is important, allowing the condition of the food to be clearly seen through the package. But for other applications such as pharmaceuticals or space cooling, an opaque insulating layer could be used instead, providing even more options for the design of materials for specific uses, says Lu, who was the paper's lead author.

The hydrogel material is composed of 97 percent water, which gradually evaporates away. In the experimental setup, it took 200 hours for a 5-millimeter layer of hydrogel, covered with 5 millimeters of aerogel, to lose all its moisture, compared to 40 hours for the bare hydrogel. The two-layered material's cooling level was slightly less - a reduction of 7 degrees Celsius (about 12.6 degrees Fahrenheit) versus 8 C (14.4 F) - but the effect was much longer-lasting. Once the moisture is gone from the hydrogel, the material can then be recharged with water so the cycle can begin again.

Especially in developing countries where access to electricity is often limited, Lu says, such materials could be of great benefit. "Because this passive cooling approach does not rely on electricity at all, this gives you a good pathway for storage and distribution of those perishable products in general," he says.


Related Links
MIT News Office
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
New kind of superconductivity discovered
Tokyo, Japan (SPX) Nov 09, 2020
Superconductivity is a phenomenon where an electric circuit loses its resistance and becomes extremely efficient under certain conditions. There are different ways in which this can happen which were thought to be incompatible. For the first time researchers discover a bridge between two of these methods to achieve superconductivity. This new knowledge could lead to a more general understanding of the phenomena, and one day to applications. If you're like most people, there are three states of mat ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
New PlayStation hits market as console battle with Xbox begins

Smaller than ever - exploring the unusual properties of quantum-sized materials

Smart concrete could pave the way for high-tech, cost-effective roads

Earth may have recaptured a 1960s-era rocket booster

ENERGY TECH
Launch of next 3 Russian Gonets-M satellites scheduled on Nov 24

US Military, Industry Discuss Improving High-Tech Battlefield Communication

Unlocking quantum key distribution for space asset cybersecurity

How aerospace is leading the development of quantum communication technologies for space

ENERGY TECH
ENERGY TECH
China's BDS-3 improves timing service

Fourth Lockheed Martin-Built GPS III Satellite's On Board Engine Now Propelling It To Orbit

DNA-based molecular tagging system could replace printed barcodes

China's self-developed BDS sees thriving applications

ENERGY TECH
DARPA selects teams to further advance dogfighting algorithms

Air Force ups the ante on supersonic rain erosion testing

Boeing awarded $9.8B contract for Saudi F-15 support

Philippines receives its first S-70i helicopters

ENERGY TECH
Telling when a nanolithography mold will break through droplets

Sticky electrons: When repulsion turns into attraction

Tiny device enables new record in super-fast quantum light detection

A new candidate material for quantum spin liquids

ENERGY TECH
Microbes might be gatekeepers of the planet's greatest greenhouse gas reserves

NASA deems SwRI-developed satellites healthy, extends CYGNSS mission

SEOSAT-Ingenio sealed from view

More science for less money using 3D-printed weather stations

ENERGY TECH
Study reveals how plastic pollution travels everywhere

India's clean fuel transition slowed by belief that firewood is better for well-being

Italy's pollution 'persistently' breaks EU law: court

India court bans firecrackers in pollution-hit cities citing virus surge









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.