Space Industry and Business News
ENERGY TECH
Porous silicon oxide electrodes advance sustainable energy storage solutions
illustration only
Porous silicon oxide electrodes advance sustainable energy storage solutions
by Riko Seibo
Tokyo, Japan (SPX) Dec 16, 2024

Lithium-ion batteries (LIBs) are indispensable in modern devices, from smartphones to electric vehicles and renewable energy systems. Yet, challenges such as limited durability and the use of toxic liquid electrolytes necessitate advancements in battery technology. Aiming to address these issues, researchers have been investigating all-solid-state batteries as a potential alternative for over a decade.

Despite their promise, silicon-based all-solid-state batteries have faced significant hurdles. The repetitive expansion and contraction of the silicon electrode during charge/discharge cycles generates mechanical stress, causing the electrode to crack and detach from the solid electrolyte, leading to a decline in performance.

A research team led by Professor Takayuki Doi of Doshisha University has proposed a potential solution. Their recent study, published in *ACS Applied Materials and Interfaces* on October 29, 2024, examines the introduction of pores into silicon oxide (SiOx) electrodes to mitigate these mechanical stresses. Collaborating with Dr. Kohei Marumoto of Doshisha University and Dr. Kiyotaka Nakano from Hitachi High-Tech Corporation, the team explored the performance of porous SiOx electrodes in all-solid-state cells.

The team fabricated the electrodes using radiofrequency sputtering, incorporating Li-La-Zr-Ta-O (LLZTO) as a solid electrolyte. Advanced scanning electron microscopy revealed that porous SiOx electrodes outperformed their non-porous counterparts during repeated charge/discharge cycles.

"Non-porous SiOx partially exfoliated from the LLZTO electrolyte by the 20th cycle, which was consistent with the drastic decline in capacity and rise in internal resistance we observed," says Dr. Doi. "In contrast, though the initially observed pore structure of porous SiOx collapsed through repeated expansion and contraction, the remaining pores still served as a buffer against the internal and interfacial stresses. This ultimately helped maintain the interfacial joint between the electrode and the electrolyte."

A significant achievement of the research is the ability to fabricate thicker SiOx electrodes. While conventional silicon electrodes require thicknesses below one micrometer to prevent cracking, porous SiOx electrodes achieved stable performance at 5 um. This improvement results in an energy density 17 times higher than that of traditional non-porous silicon electrodes, significantly enhancing space efficiency by enabling greater energy storage per unit volume.

The study emphasizes the broader implications of this innovation. Porous silicon oxide electrodes could pave the way for more efficient and safer all-solid-state batteries, benefiting applications ranging from electric vehicles to large-scale energy storage. "We expect the results of our research to make a multifaceted contribution towards sustainable development goals, not only in terms of climate change countermeasures based on the reduction of carbon emissions, but also in terms of economic growth and urban development," adds Dr. Doi.

The findings also highlight areas for further exploration, particularly in optimizing the porous structures of SiOx electrodes to achieve peak performance. This progress represents a significant step toward a sustainable future powered by advanced energy storage technologies.

Research Report:Tailored Design of a Nanoporous Structure Suitable for Thick Si Electrodes on a Stiff Oxide-Based Solid Electrolyte

Related Links
Doshisha University
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Existing EV batteries may last significantly longer under real-world conditions
Los Angeles CA (SPX) Dec 13, 2024
Electric vehicle (EV) batteries subjected to typical real-world driving scenarios-such as heavy traffic, urban commutes, and long highway trips-could last up to 40% longer than previously projected, according to new research from the SLAC-Stanford Battery Center, a collaboration between Stanford University's Precourt Institute for Energy and SLAC National Accelerator Laboratory. This finding suggests EV owners may delay the costly replacement of battery packs or the purchase of new vehicles for several ... read more

ENERGY TECH
Stretchable, flexible, recyclable. This plastic is fantastic

Speaking crystal AI predicts atomic arrangements to aid material discovery

Researchers uncover strong light-matter interactions in quantum spin liquids

Cracking the Code for materials that can learn

ENERGY TECH
Pentagon collaborates with Movius on secure communication solutions

Viasat secures $568M contract to enhance C5ISR capabilities for US Defense

ST Engineering iDirect launches innovative multi-orbit satellite connectivity

Lockheed Martin prepares TacSat for 2025 launch to enhance space connectivity

ENERGY TECH
ENERGY TECH
GPS alternative for drone navigation leverages celestial data

Deciphering city navigation AI advances GNSS error detection

China advances next-generation BeiDou satellite navigation system

Space Systems Command and U.S. Navy achieve major MGUE program milestone

ENERGY TECH
Uncrewed aircraft systems traffic management expands beyond line of sight

U.S., South Korea to flex aerial might during May airshow

NASA Scientific Balloon Flights to Lift Off From Antarctica

Airlines chief says jet manufacturers need to deliver

ENERGY TECH
Precise control of quantum states with extreme ultraviolet lasers

Rethinking the quantum chip

Researchers design new materials for advanced chip manufacturing

Bringing the power of tabletop precision lasers for quantum science to the chip scale

ENERGY TECH
SatVu secures ESA funding for high-resolution thermal imaging project in energy sector

NASA selects SwRI for NOAA space weather instrument development

Constellr secures long-term partnership with DLR

Sentinel 1C radar satellite begins operations to enhance earth observation

ENERGY TECH
Air pollution in India tied to significant mortality rates

Students, employees told to stay home due to air pollution in Iran

President's push to scrap gold mining ban causes outcry in El Salvador

Trump vows fast environmental approvals for $1 bn investments in US

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.