Space Industry and Business News  
EXO WORLDS
"Polluted" white dwarfs show that stars and planets grow together
by Staff Writers
Groningen, Netherlands (SPX) Nov 15, 2022

Artistic impression of a planetesimal on collision course with a white dwarf star.

Observations and simulations of 237 white dwarfs strengthen the evidence that planets and stars rapidly form together and become planetary systems. An international team of astronomers and planetary scientists, including Tim Lichtenberg of the University of Groningen's Kapteyn Institute, published their findings on Monday in Nature Astronomy.

Planets form in a disk of hydrogen, helium and small particles of ice and dust around a young star. The dust particles clump together and grow slowly at first. When enough of them are packed together, so-called planetesimals can form. These can subsequently grow into planets. Any debris is left behind as asteroids or planetesimals. That debris still occasionally slams into the star, providing a kind of fossil imprint of early geological processes.

There is debate among astronomers and planetary scientists about whether stars form first and planets only many millions of years later, or whether planet formation begins almost simultaneously with the star. The new study strengthens the hypothesis that stars and planets grow simultaneously.

White dwarfs
The researchers analyzed light from the atmosphere of 237 so-called polluted white dwarfs. These end-of-life stars are called polluted because, in addition to helium and hydrogen, they temporarily contain heavier elements in their atmosphere, such as silicon, magnesium, iron, oxygen, calcium, carbon, chromium and nickel.

"The enrichment with heavy elements indicates that iron-core planetesimals have been falling onto the star," said Tim Lichtenberg, one of the study's authors. He was working at the University of Oxford when the research began and is now at the University of Groningen. "And such an iron core can likely only form if the fragment has been previously strongly heated. This is because that's when iron, rock and more volatile elements are separated."

Simulations
Additional simulations of asteroid collisions reinforce the observations and show that the debris falling into the stars must be quite small. "The iron cores, as with asteroids in our own solar system, were likely created by heat released during the decay of short-lived radioactive elements," Lichtenberg said. "We suppose that the element in question is aluminum-26. That element also drove the formation of planetary cores in our own solar system."

Aluminum-26 has a half-life of about 700,000 years. As a consequence, the researchers argue that planet formation around what are now white dwarf stars must have occurred in the first few hundred thousand years of the stars' lives.

In the future, the researchers plan to expand their research on white dwarf pollution. For example, the amounts of nickel and chromium in these "celestial graveyards" provide information about how large an asteroid or planetesimal was when its iron core formed. And that can give insights into atmospheric composition of Earth-like exoplanets.

Research Report:Rapid formation of exoplanetesimals revealed by white dwarfs


Related Links
Kapteyn Astronomical Institute
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
Early planetary migration can explain missing planets
Houston TX (SPX) Nov 08, 2022
A new model that accounts for the interplay of forces acting on newborn planets can explain two puzzling observations that have cropped up repeatedly among the more than 3,800 planetary systems cataloged to date. One puzzle known as the "radius valley" refers to the rarity of exoplanets with a radius about 1.8 times that of Earth. NASA's Kepler spacecraft observed planets of this size about 2-3 times less frequently than it observed super-Earths with radii about 1.4 times that of Earth and mini-Ne ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Norway selects Lockheed Martin TPY-4 radar to Enhance Homeland Defense

Morpheus partners with Kayhan for first All-In-One Collision Avoidance System

How does radiation travel through dense plasma

Turning asphaltene into graphene for composites

EXO WORLDS
Datapath delivers transformative DKET Terminal to US Space Force

Arianespace to launch EAGLE-1 for Europe's Quantum Cryptography program

Arianespace to launch EAGLE-1 for Europe's Quantum Cryptography program

Rivada Space Networks signs MoU with SpeQtral to develop ultra-secure communications

EXO WORLDS
EXO WORLDS
USU leads international space mission to shed new light on Brazil's vexing GPS problem

Navigating the sea from space with innovative technologies

KKR leads Series B funding round in AI leader Advanced Navigation

BeiDou making mark among navigation systems

EXO WORLDS
NATO says Russian jets conduct 'unsafe' Baltic ship overflight

France, Germany hail deal on new European fighter jet

US B-1B bomber redeployed for joint drill: S. Korean military

The cold heart that powers our ZEROe aircraft

EXO WORLDS
NIST's grid of quantum islands could reveal secrets for powerful technologies

UK orders Chinese-owned firm to sell most of chip maker

Mini-engine exploits noise to convert information into fuel

Japan govt backs major firms in next-gen chip project

EXO WORLDS
Microsoft and Planet to provide AI and satellite data for African climate projects

China launches Yaogan 34 remote sensing satellite

Lockheed Martin, NVIDIA to build digital twin of current global weather conditions for NOAA

Metaspectral raises $4.7M to launch fusion, a cloud-based AI platform

EXO WORLDS
'A shock': divers fish for waste to preserve Greece's Aegean shores

Nespresso takes the plunge with compostable coffee capsules

Health or jobs: Peruvian mining town at a crossroads

Tunisians protest over Sfax garbage crisis









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.