Space Industry and Business News  
TIME AND SPACE
Polar vortices observed in ferroelectric
by Staff Writers
Berkeley CA (SPX) Feb 02, 2016


The first ever observations of polar vortices in a ferroelectic material could find potential applications in ultracompact data storage and processing and the production of new states of matter. Image courtesy Berkeley Lab. For a larger version of this image please go here.

The observation in a ferroelectric material of "polar vortices" that appear to be the electrical cousins of magnetic skyrmions holds intriguing possibilities for advanced electronic devices. These polar vortices, which were theoretically predicted more than a decade ago, could also "rewrite our basic understanding of ferroelectrics" according to the researchers who observed them.

A team of scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have recorded the first ever observations of rotating topologies of electrical polarization that are similar to the discrete swirls of magnetism known as "skyrmions."

If these smoothly rotating vortex/anti-vortex topologies prove to be electrical skyrmions, they could find potential applications in ultracompact data storage and processing, and could also lead to the production of new states of matter and associated phenomena in ferroic materials.

"It has long been thought that rotating topological structures are confined to magnetic systems and aren't possible in ferroelectric materials, but through the creation of artificial superlattices, we have controlled the various energies of a ferrolectric material to promote competition that lead to such new states of matter and polarization arrangements," says Ramamoorthy Ramesh, Berkeley Lab's Associate Laboratory Director for Energy Technologies and the co-principal investigator for this study. He also holds UC Berkeley's Purnendu Chatterjee Endowed Chair in Energy Technologies.

"Ferroelectric materials such as the materials used in this work have produced a number of exciting emergent properties over the years, but these smoothly-rotating polar vortex structures really are different," says Lane Martin, a faculty scientist with Berkeley Lab's Materials Sciences Division and Associate Professor in UC Berkeley's Department of Materials Science and Engineering, who is this study's co-principal investigator.

"I think if you surveyed the community many would shake their heads in disbelief at such structures, but it turns out there really is a tendency for vortex states to form in nature even in these polar systems. And, when one looks more broadly, vortex structures can occur across huge length scales - from galaxies and weather systems all the way down to 10s of atoms as in our case."

Ramesh and Martin are the corresponding authors of a Nature paper describing this study in detail. The paper is titled "Observation of Polar Vortices in Oxide Superlattices." The lead researchers on this work are Ajay Yadav, Christopher Nelson, and Anoop Damodaran who also hold joint appointments with Berkeley Lab and UC Berkeley. (Full list of authors below.)

Ferroic materials display unique electrical or magnetic properties - or both in the case of multiferroics. For example, the electrical field of a ferroelectric material can be polarized in favor of either a positive or negative charge with the application of an external electrical field.

In a ferromagnetic material, the application of an external magnetic field aligns the spin of their charged particles, resulting in the material becoming a permanent magnet. In recent years, it was discovered that the application of an external magnetic field can also produce atom-sized cyclones of skyrmions, which act like baryon particles and can be moved coherently over macroscopic distances. These properties make skyrmions excellent candidates for spintronic applications.

"We believe the polar vortices we observed in ferroelectrics, when fully explored, have the potential to be topological states of matter that are similar to magnetic skyrmions," Ramesh says. "The fact that our polar vortices can display emergent behavior in their electronic, optical, magnetic and other properties suggests that heretofore unexplored applications and functionalities could be possible."

Ramesh, Martin and their collaborators worked with what has become a canonical system in the community, ultrafine layered structures built from lead titanate and strontium titante compounds controlled down to a few unit cells each, in which each unit cell is approximately 0.4 nanometers thick. They created superlattices that harbored a three-way competition between elastic, electrostatic and gradient energies within the layers of lead titanate and strontium titanate. This unique three-way competition gives rise to the polar vortices.

"As we tune the period lengths of our superlattices, we can tune the relative importance of these three energy scales," Martin says. "Although rather exotic things can occur if one changes the superlattice period to be both smaller and bigger than we studied here, we really found the 'sweet-spot' in this work that produced these polar vortices which are an entirely new phenomenon."

A combination of scanning transmission electron microscopy (STEM) and X-ray diffraction studies were used observe and characterize the polar vortices. The STEM work was carried out at Berkeley Lab's Molecular Foundry, a DOE Office of Science User Facility, on TEAM 0.5, the world's most powerful transmission electron microscope. The X-ray diffraction work was carried out at the Advanced Photon Source, another DOE Office of Science User Facility, which is hosted by DOE's Argonne National Laboratory.

"Our study is really indicative of how DOE-funded research programs can bring together a diverse range of expertise, including atomically-controlled materials synthesis and cutting-edge research facilities, and materials theory to enable foundational discoveries that really change the way we think about exotic materials and the possibilities for using them," says Ramesh.

"This is just the beginning for the study of polar vortices in ferroelectric materials," Martin says. "We're observing a new state of matter and we have our work cut out for us in mapping and understanding how it evolves. We can imagine adding a magnetic spin component to similar superlattices and thus potentially paving a pathway to fundamentally demonstrate electric-field control of magnetism."

Other co-authors of the Nature paper were Shang-Lin Hsu, Zijian Hong, James Clarkson, Christian Schlepuetz, Anoop Damodaran, Padraic Shafer, Elke Arenholz, Liv Dedon, Deyang Chen, Ashvin Vishwanath, Andrew Minor, Long-Qing Chen and Jason Scott.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
A new magnetoresistance effect occurring in materials with strong spin-orbit coupling
Washington DC (SPX) Jan 29, 2016
Researchers of the Nanodevices group, in collaboration with groups from the CFM and DIPC, both institutions also located in Donostia-San Sebastian, have discovered a new magnetoresistance effect occurring in materials with strong spin-orbit coupling. This new effect has been recently reported in the prestigious journal Physical Review Letters and featured as an Editor's Suggestion. These m ... read more


TIME AND SPACE
Energy harvesting via smart materials

A new quantum approach to big data

Novel 4-D printing method blossoms from botanical inspiration

Apple quietly working on virtual reality: report

TIME AND SPACE
Harris wins place on military communications contract

General Dynamics MUOS-Manpack radio supports government testing of MUOS network

Raytheon to produce, test Navy Multiband Terminals

ADS to build one of two satellites for future COMSAT NG system

TIME AND SPACE
70th consecutive successful launch for Ariane 5

AMOS-6 Scheduled for May 2016 Launch by Space-X

Arianespace's year-opening Ariane 5 mission is approved for launch

SpaceX Falcon 9 upgrade certified for National Security Space launches

TIME AND SPACE
PSLV launches India's 5th navigation satellite

Trimble to provide GPS survey systems for U.S. Marines

SMC releases RFP for GPS III Space Vehicles

GPS vultures swoop down on illegal dumps in Peru

TIME AND SPACE
Sri Lanka takes stake in Google balloon Internet venture

Graphene composite may keep wings ice-free

U.S. Air Force sending F-35A to U.K. air shows

Boeing to train NATO C-17 aircrews

TIME AND SPACE
Scientists build a neural network using plastic memristors

A step towards keeping up with Moore's Law

Switchable material could enable new memory chips

Molecular-like photochemistry from semiconductor nanocrystals

TIME AND SPACE
NASA Takes Part in Airborne Study of Southern Ocean

SpaceX launches US-French oceans satellite

Flooding along the Mississippi seen from space

Fires burning in Africa and Asia cause high ozone in tropical Pacific

TIME AND SPACE
Human impact has created a 'plastic planet,'

Highly efficient heavy metal ions filter

Spain court finds captain, British insurer liable for Prestige oil spill

Lead poisoning strikes another US town









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.