Subscribe free to our newsletters via your
. Space Industry and Business News .




EXO WORLDS
Planetary pebbles were building blocks for the largest planets
by Staff Writers
Boulder, CO (SPX) Aug 20, 2015


This artist's concept of a young star system shows gas giants forming first, while the gas nebula is present. Southwest Research Institute scientists used computer simulations to nail down how Jupiter and Saturn evolved in our own solar system. These new calculations show that the cores of gas giants likely formed by gradually accumulating a population of planetary pebbles - icy objects about a foot in diameter. Image Courtesy of NASA/JPL-Caltech. For a larger version of this image please go here.

Researchers at Southwest Research Institute (SwRI) and Queen's University in Canada have unraveled the mystery of how Jupiter and Saturn likely formed. This discovery, which changes our view of how all planets might have formed, will be published in the Aug. 20 issue of Nature.

Ironically, the largest planets in the solar system likely formed first. Jupiter and Saturn, which are mostly hydrogen and helium, presumably accumulated their gasses before the solar nebula dispersed. Observations of young star systems show that the gas disks that form planets usually have lifetimes of only 1 to 10 million years, which means the gas giant planets in our solar system probably formed within this time frame.

In contrast, the Earth probably took at least 30 million years to form, and may have taken as long as 100 million years. So how could Jupiter and Saturn have formed so quickly?

The most widely accepted theory for gas giant formation is the so-called core accretion model. In this model, a planet-sized core of ice and rock forms first. Then, an inflow of interstellar gas and dust attaches itself to the growing planet.

However, this model has an Achilles heel; specifically, the very first step in the process. To accumulate a massive atmosphere requires a solid core roughly 10 times the mass of Earth. Yet these large objects, which are akin to Uranus and Neptune, had to have formed in only a few million years.

In the standard model of planet formation, rocky cores grow as similarly sized objects accumulate and assimilate through a process called accretion. Rocks incorporate other rocks, creating mountains; then mountains merge with other mountains, leading to city-sized objects, and so on. However, this model is unable to produce planetary cores large enough, in a short enough period of time, to explain Saturn and Jupiter.

"The timescale problem has been sticking in our throats for some time," said Dr. Hal Levison, an Institute scientist in the SwRI Planetary Science Directorate and lead author of the paper. Titled "Growing the Gas Giant Planets by the Gradual Accumulation of Pebbles," the paper is co-authored by SwRI Research Scientist Dr. Katherine Kretke and Dr. Martin Duncan, a professor at Queen's University in Kingston, Ontario.

"It wasn't clear how objects like Jupiter and Saturn could exist at all," continued Levison. New calculations by the team show that the cores of Jupiter and Saturn could form well within the 10-million-year time frame if they grew by gradually accumulating a population of planetary pebbles - icy objects about a foot in diameter.

Recent research has shown that gas can play a vital role in increasing the efficiency of accretion. So pebbles entering orbit can spiral onto the protoplanet and assimilate, assisted by a gaseous headwind.

In their article, Levison, Kretke, and Duncan show that pebble accretion can produce the observed structure of the solar system as long as the pebbles formed slowly enough that the growing planets have time to gravitationally interact with one another.

"If the pebbles form too quickly, pebble accretion would lead to the formation of hundreds of icy Earths," said Kretke. "The growing cores need some time to fling their competitors away from the pebbles, effectively starving them. This is why only a couple of gas giants formed."

"As far as I know, this is the first model to reproduce the structure of the outer solar system, with two gas giants, two ice giants (Uranus and Neptune), and a pristine Kuiper belt," says Levison.

"After many years of performing computer simulations of the standard model without success, it is a relief to find a new model that is so successful," adds Duncan.

Levison is the principal investigator of the research, funded through a National Science Foundation Astronomy and Astrophysics Research Grant


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Southwest Research Institute
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
A new model of gas giant planet formation
Kingston, UK (SPX) Aug 20, 2015
Queen's University researcher Martin Duncan has co-authored a study that solves the mystery of how gas giants such as Jupiter and Saturn formed in the early solar system. In a paper published this week in the journal Nature, Dr. Duncan, along with co-authors Harold Levison and Katherine Kretke (Southwest Research Institute), explain how the cores of gas giants formed through the accumulati ... read more


EXO WORLDS
India to Set Up Space Research and Satellite Monitoring Station in Fiji

Connected sports shirt promises 'smart,' at a price

Matter wave technique that could cool molecules

Dancing droplets launch themselves from thin fibers

EXO WORLDS
Harris delivers Falcon tactical radios

DLS providing equipment for networked communications

Army funds testing of upgrade to communications system

General Dynamics delivering more digital modular radios to Navy

EXO WORLDS
AAC and Garvey Spacecraft Deliver First Rocket Motor to Kodiak

ARSAT-2 arrives in French Guiana

Success for 2 long-time Arianespace customers: Eutelsat and Intelsat

Arianespace integrates EUTELSAT 8 West B and Intelsat 34 for Ariane 5 launch

EXO WORLDS
Nicaragua to Host Russian GPS-Equivalent Ground Stations

Beidou satellites begin autonomous operation in space

Alibaba joins China arms maker to offer location services

Russia may offer Glonass-based navigation system for light aircraft

EXO WORLDS
More F-35 training systems ordered from Cubic Global Defense

Cathay Pacific 1H profit up nearly sixfold, misses estimates

Israeli F-16s to carry small diameter bombs

Airbus DS supplying radar systems to Australia

EXO WORLDS
Designer circuits that do more with less power

'Quantum dot' technology may help light the future

A thin ribbon of flexible electronics can monitor health, infrastructure

Danish breakthrough brings futuristic electronics a step nearer

EXO WORLDS
Sentinel-1A watching Jakobshavn glacier in action

Putting NASA Earth Data to Work

Sentinels catch river traffic jam

China to launch Jilin-1 satellite in October

EXO WORLDS
Cyanide 356 times limits found at China blast test point: officials

Uproar in India's 'Valley of Gods' over green ruling

Better dsinfecting of spinach, salad greens would reduce illness

Rain in China blast city raises pollution fears




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.