Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
Planck challenges our understanding of the Universe
by Staff Writers
London, UK (SPX) Mar 22, 2013


Overall, the information extracted from Planck's new map provides an excellent confirmation of the standard model of cosmology at an unprecedented accuracy, setting a new benchmark for our knowledge of the contents of the Universe.

Europe's Planck satellite - a flagship mission for the UK Space Agency - has compiled the most detailed map ever created of the cosmic microwave background (the relic radiation from the Big Bang). The new map refines our understanding of the Universe's composition and evolution, and unveils new features that could challenge the foundations of our current understanding of its evolution.

The image is based on the initial 15.5 months of data from Planck and is the mission's first all-sky picture of the oldest light in our Universe, imprinted on the sky when it was just 380 000 years old. This cosmic microwave background (CMB) shows tiny temperature fluctuations that correspond to regions of slightly different densities at very early times, representing the seeds of all future structure: the stars and galaxies of today.

Overall, the information extracted from Planck's new map provides an excellent confirmation of the standard model of cosmology at an unprecedented accuracy, setting a new benchmark for our knowledge of the contents of the Universe.

Dr Chris Castelli, Acting Director of Science, Technology and Exploration at the UK Space Agency, said, "We're immensely proud to be playing a key role in this amazing discovery. With its ability to make such detailed and accurate observations, Planck is helping us to place the vital pieces of a jigsaw that could give us a full picture of the evolution of our Universe, rewriting the textbooks along the way."

"The CMB temperature fluctuations detected by Planck confirm once more that the relatively simple picture provided by the standard model is an amazingly good description of the Universe," explains George Efstathiou of the University of Cambridge.

The properties of the hot and cold regions of the map provide information about the composition and evolution of the Universe. Normal matter that makes up stars and galaxies contributes just 4.9% of the mass/energy density of the Universe. Dark matter, which has thus far only been detected indirectly by its gravitational influence, makes up 26.8%, nearly a fifth more than the previous estimate. Conversely, dark energy, a mysterious force thought to be responsible for accelerating the expansion of the Universe, accounts for slightly less than previously thought, at around 69%.

The Planck data also set a new value for the rate at which the Universe is expanding today, known as the Hubble constant. At 67.3 km/s/Mpc, this is significantly different from the value measured from relatively nearby galaxies. This somewhat slower expansion implies that the Universe is also a little older than previously thought, at 13.8 billion years.

The analysis also gives strong support for theories of "inflation", a very brief but crucial early phase during the first tiny fraction of a second of the Universe's existence. As well as explaining many properties of the Universe as a whole, this initial expansion caused the ripples in the CMB that we see today.

Although this primordial epoch can't be observed directly, the theory predicts a set of very subtle imprints on the CMB map. Previous experiments have not been able to confidently detect these subtle imprints, but the high resolution of Planck's map confirms that the tiny variations in the density of the early Universe match those predicted by inflation.

'The sizes of these tiny ripples hold the key to what happened in that first trillionth of a trillionth of a second. Planck has given us striking new evidence that indicates they were created during this incredibly fast expansion, just after the Big Bang', explained Joanna Dunkley of the University of Oxford.

But because the precision of Planck's map is so high, it also reveals some peculiar unexplained features that may well require new physics to be understood. Amongst the most surprising findings are that the fluctuations in the CMB over large scales do not match those predicted by the standard model. This anomaly adds to those observed by previous experiments, and confirmed by Planck, including an asymmetry in the average temperatures on opposite hemispheres of the sky, and a cold spot that extends over a patch of sky that is much larger than expected.

One way to explain the anomalies is to propose that the Universe is in fact not the same in all directions on a larger scale than we can observe. In this scenario, the light rays from the CMB may have taken a more complicated route through the Universe than previously understood, resulting in some of the unusual patterns observed today.

"Our ultimate goal would be to construct a new model that predicts the anomalies and links them together. But these are early days; so far, we don't know whether this is possible and what type of new physics might be needed. And that's exciting," says Professor Efstathiou.

Professor John Womersley, Chief Executive of the Science and Technology Facilities Council (STFC), said, "Planck has given us an amazing picture of the very earliest moments of the Universe. These results are the culmination of many years of work by UK scientists and engineers supported by STFC. This kind of project can sometimes seem expensive but the payoff in science and technology more than justifies the investment we've made.'"

.


Related Links
UK Space Agency
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
New map of universe raises new questions
Paris (UPI) Mar 21, 2013
The most detailed map of the signature radiation the big bang ever created could challenge current understanding of the universe, European scientists say. The map created from the initial 15 months of data from the European Space Agency's Planck space telescope is the mission's first all-sky picture of the oldest light in the universe when it was just 380,000 years old, the ESA reported ... read more


TIME AND SPACE
Smartphone app turns home drone into spacecraft

Scientists claim new glasses-free 3D for cellphone

NASA Awards Astrotech Contract For SMAP Spacecraft Processing

Videogame power harnessed for positive goals

TIME AND SPACE
Soldiers and Families Can Suffer Negative Effects from Modern Communication Technologies

DARPA Seeks More Robust Military Wireless Networks

DoD Selects Northrop Grumman for Joint Command and Control System

Northrop Grumman Highlights Affordable Milspace Communications

TIME AND SPACE
Sea Launch and EchoStar Reach Preliminary Agreement for Launch Services

Estonia's student cubesat satellite is ready for the next Vega launch

Vega receives its upper stage as the next mission's two primary passengers land in French Guiana

Grasshopper Successfully Completes 80M Hover Slam

TIME AND SPACE
Galileo fixes Europe's position in history

China city searching for 'modern Marco Polo'

Milestone for European navigation system

China targeting navigation system's global coverage by 2020

TIME AND SPACE
Northrop Grumman Delivers 100th Center Fuselage for F-35 Lightning II

EU puts airline carbon tax on hold for a year

First Lockheed Martin F-35As Report to Nellis AFB for Operational Testing

Listening for the Boom and Rattle of Supersonic Flight

TIME AND SPACE
NIST microscope measures nanomagnet property vital to 'spintronics'

Surprising Control over Photoelectrons from a Topological Insulator

Organic nanowires open the way for optoelectronic device miniaturization

Ultra-high-speed optical communications link sets new power efficiency record

TIME AND SPACE
CSTARS Awarded Funding Over Three Years By Office of Naval Research

Google Maps adds view from Mt. Everest

Significant reduction in temperature and vegetation seasonality over northern latitudes

GOCE: the first seismometer in orbit

TIME AND SPACE
Hong Kong light pollution 'one of world's worst'

China to more than double air monitoring network

Little faith in China leaders' pollution promises

Dead pigs contaminating Chinese river?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement