Subscribe free to our newsletters via your
. Space Industry and Business News .




FLORA AND FAUNA
Phytoplankton social mixers
by Denise Brehm for MIT News
Cambridge MA (SPX) Jul 18, 2013


Scientists at MIT and Oxford University have shown that the motility of phytoplankton also helps them determine their fate in ocean turbulence. Credit: W. M. Durham, E. Climent, M. Barry, F. De Lillo, G. Boffetta, M. Cencini and R. Stocker.

Tiny ocean plants, or phytoplankton, were long thought to be passive drifters in the sea - unable to defy even the weakest currents, or travel by their own volition. In recent decades, research has shown that many species of these unicellular microorganisms can swim, and do so to optimize light exposure, avoid predators or move closer to others of their kind.

Now scientists at MIT and Oxford University have shown that the motility of phytoplankton also helps them determine their fate in ocean turbulence. Rather than acting to distribute them evenly - as physics would demand of small particles mixed into a fluid - the individual vortices that make up ocean turbulence are like social mixers for phytoplankton, bringing similar cells into close proximity, potentially enhancing sexual reproduction and other ecologically desirable activities.

In a paper appearing online July 15 in Nature Communications, William Durham of Oxford, Roman Stocker of MIT and co-authors describe how at the scale of millimeters, phytoplankton caught in a watery vortex form highly concentrated patches at the center of the swirl. In the turbulent ocean where short-lived vortices form continually, this process repeats itself, carrying the microorganisms from social mixer to social mixer.

The findings are counterintuitive because turbulence is the most expedient means of mixing two substances (imagine stirring milk into coffee). If they were unable to swim, microorganisms exposed to a sea of vortices would form a homogenous distribution in the water. Instead, the study shows that the turbulence causes the phytoplankton to form concentrated patches.

'Turbulent un-mixing'
"Based on our intuition of turbulence and turbulent mixing, we expected homogeneity to reign," says Stocker, an associate professor of civil and environmental engineering who led the study.

"Instead, the phytoplankton surprised us by forming highly concentrated clusters of cells - it's turbulent un-mixing. For the phytoplankton, this is a vehicle to effectively find cells of the same species without any sensory information on each other's location or the need to invest in costly means of chemical communication."

But patchiness can also have a downside: Phytoplankton, the photosynthetic microbes of the sea, form the base of the ocean food web. Clusters of cells can become easy prey to zooplankton predators that home in on clusters of phytoplankton. And close proximity to like cells can increase competition among the microorganisms for sparse nutrients.

"While patchiness increases the chance of a fatal encounter with a predator, it also increases the chance of finding other phytoplankton cells, which is needed to form resilient cysts that can survive harsh winter conditions," says Durham, the paper's first author and a lecturer at Oxford University who began working on this study as a doctoral student at MIT.

"This mechanism suggests phytoplankton might tune their motility to have the best of both worlds, minimizing patchiness when there are a lot of predators around while maximizing patchiness when the time is ripe for cyst formation."

The research team - which includes MIT graduate student Michael Barry, Eric Climent of the University of Toulouse, Filippo De Lillo and Guido Boffetta of the University of Torino and Massimo Cencini of the National Research Center of Italy - first performed experiments using phytoplankton in the lab, then extended their observations to a turbulent ocean with high-resolution simulations performed on a supercomputer.

Possible evolutionary adaptation
For the experiments, a transparent box shaped like the letter H formed a simplified version of the ocean, with seawater flowing upward through the vertical bars, creating two inner-directed vortices within the horizontal bar.

When the researchers added Heterosigma akashiwo (a motile, red-tide-forming species known for its ability to kill fish), the microorganisms formed dense patches at the centers of the swirls. To single out the role of motility, the researchers repeated the experiment with dead microorganisms, which the turbulence distributed uniformly.

The computer simulation mimicked ocean turbulence on a larger scale, with more than 3 million phytoplankton and many interacting vortices forming at the smallest possible scale of turbulence. It found that patchiness increased more than tenfold when the phytoplankton swam.

And as their speed increased, so did the patchiness, leading to the conjecture that over evolutionary timescales, the microorganisms might possibly have developed the ability to actively adjust their swimming speed to modulate interactions with others of the same species and with predators.

"Life is turbulent in the vast expanses of the ocean - and it's fascinating to learn how some of the most important organisms on our planet fare and behave in their daily turbulent lives," Stocker adds.

The work was funded by the Human Frontier Science Program, the National Science Foundation and the MIT MISTI-France Program.

.


Related Links
Massachusetts Institute of Technology
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Boldly illuminating biology's 'dark matter'
Washington DC (SPX) Jul 16, 2013
Is space really the final frontier, or are the greatest mysteries closer to home? In cosmology, dark matter is said to account for the majority of mass in the universe, however its presence is inferred by indirect effects rather than detected through telescopes. The biological equivalent is "microbial dark matter," that pervasive yet practically invisible infrastructure of life on the plan ... read more


FLORA AND FAUNA
Unusual material expands dramatically under pressure

Milikelvins drive droplet evaporation

Stanford scientists break record for thinnest light-absorber

Penn researchers help show new way to study and improve catalytic reactions

FLORA AND FAUNA
US Navy Poised to Launch Lockheed Martin-Built Secure Communications Satellite for Mobile Users

Northrop Grumman Moves New B-2 Satellite Communications Concept to the High Ground

Canada links up on secure U.S. military telecoms network

Lockheed Martin-Built MUOS Satellite Encapsulated In Launch Vehicle Payload Fairing

FLORA AND FAUNA
Alphasat stacks up

ESA Signs Off On Baseline Configuration Of Ariane 6

Alphasat and INSAT 3D fueled for Ariane 5 heavy lift dual launch

Special group to be set up for inspecting production of Proton-M carrier rockets

FLORA AND FAUNA
Lockheed Martin Delivers Antenna Assemblies For Integration On First GPS III Satellite

GPS III satellite antenna assemblies ready for installation

Lockheed Martin GPS III Prototype Validates Test Facilities For Future Flight Satellites

Distorted GPS signals reveal hurricane wind speeds

FLORA AND FAUNA
Russian 5G fighters boast cutting-edge life support systems

Northrop Grumman Selected by UK Ministry of Defence to Support Large Aircraft Infrared Countermeasures Systems

Lockheed Martin Delivers 100th Targeting System for F-35

Russia to design a new strategic bomber

FLORA AND FAUNA
Broadband photodetector for polarized light

Intel profits slide as chipmaker repositions

NIST shows how to make a compact frequency comb in minutes

New analytical methodology can guide electrode optimization

FLORA AND FAUNA
e2v and Astrium sign contract for imaging sensors to equip the Sentinel 4 satellite

The First Interplanetary Photobomb

The Color of the Ocean: the SABIA-Mar Mission

GOES-R Improvements to Provide Stunning, Continuous Full-Disk Imagery

FLORA AND FAUNA
Researchers estimate over two million deaths annually from air pollution

India pays a high economic price for pollution: study

Pollution costs India $80 bn a year: World Bank

S.Korea court orders US firms to pay up over Agent Orange




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement