Space Industry and Business News  
TIME AND SPACE
Physicists create stable, strongly magnetized plasma jet in laboratory
by Staff Writers
Plainsboro NJ (SPX) Jun 04, 2019

file image only

When you peer into the night sky, much of what you see is plasma, a soupy amalgam of ultra-hot atomic particles. Studying plasma in the stars and various forms in outer space requires a telescope, but scientists can recreate it in the laboratory to examine it more closely.

Now, a team of scientists led by physicists Lan Gao of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Edison Liang of Rice University, has for the first time created a particular form of coherent and magnetized plasma jet that could deepen the understanding of the workings of much larger jets that stream from newborn stars and possibly black holes - stellar objects so massive that they trap light and warp both space and time.

"We are now creating stable, supersonic, and strongly magnetized plasma jets in a laboratory that might allow us to study astrophysical objects light years away," said astrophysicist Liang, co-author of the paper reporting the results in the Astrophysical Journal Letters.

The team created the jets using the OMEGA Laser Facility at the University of Rochester's Laboratory for Laser Energetics (LLE). The researchers aimed 20 of OMEGA's individual laser beams into a ring-shaped area on a plastic target.

Each laser created a tiny puff of plasma; as the puffs expanded, they put pressure on the inner region of the ring. That pressure then squeezed out a plasma jet reaching over four millimeters in length and created a magnetic field that had a strength of over 100 tesla.

"This is the first step in studying plasma jets in a laboratory," said Gao, who was the primary author of the paper. "I'm excited because we not only created a jet. We also successfully used advanced diagnostics on OMEGA to confirm the jet's formation and characterize its properties."

The diagnostic tools, developed with teams from LLE and the Massachusetts Institute of Technology (MIT), measured the jet's density, temperature, length, how well it stayed together as it grew through space, and the shape of the magnetic field around it.

The measurements help scientists determine how the laboratory phenomena compare to jets in outer space. They also provide a baseline that scientists can tinker with to observe how the plasma behaves under different conditions.

"This is groundbreaking research because no other team has successfully launched a supersonic, narrowly beamed jet that carries such a strong magnetic field, extending to significant distances," said Liang.

"This is the first time that scientists have demonstrated that the magnetic field does not just wrap around the jet, but also extends parallel to the jet's axis," he said.

The researchers hope to expand their research with larger laser facilities and investigate other types of phenomena. "The next step involves seeing whether an external magnetic field could make the jet longer and more collimated," Gao said.

"We would also like to replicate the experiment using the National Ignition Facility at Lawrence Livermore National Laboratory, which has 192 laser beams, half of which could be used to create our plasma ring. It would have a larger radius and thus produce a longer jet than that produced using OMEGA. This process would help us figure out under which conditions the plasma jet is strongest."

Research paper


Related Links
Princeton Plasma Physics Laboratory
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
The geometry of an electron determined for the first time
Basel, Switzerland (SPX) Jun 03, 2019
Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B. The spin of an electron is a promisi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
US says to take action to ensure rare earths supply

China steps up threat to deprive US of rare earths

Chemists develop faster way to purify elements

Scientists offer designer 'big atoms' on demand

TIME AND SPACE
Harris to build new satellite connection system prototype for USAF

AFRL demonstrates world's first daytime free-space quantum communication enabled by adaptive optics

Navy to transfer future satcom programs to Air Force

Future narrowband satellite capability to transfer to Air Force

TIME AND SPACE
TIME AND SPACE
China's satellite navigation industry scale to exceed 400 billion yuan in 2020

China to launch six to eight BDS-3 satellites this year

China Satellite Navigation Conference opens in Beijing

China launches new BeiDou navigation satellite

TIME AND SPACE
Japan ends search for crashed F35 fighter jet

State Department OKs $1.7B sale of eight F-16 Vipers to Bulgaria

US ban has 'no effect' on Huawei's aviation business: official

F-35A maintenance program to help streamline aircraft's capabilities

TIME AND SPACE
Generating high-quality single photons for quantum computing

Quantum world-first: researchers reveal accuracy of two-qubit calculations in silicon

Mobile chip titan Qualcomm faces setback with US antitrust ruling

Energy-free superfast computing invented by scientists using light pulses

TIME AND SPACE
New mineral classification system captures Earth's complex past

Remote sensing of toxic algal blooms

NASA studies Atmosphere by forming artificial night-time clouds over Marshall Islands

New Studies Increase Confidence in NASA's Measure of Earth's Temperature

TIME AND SPACE
India rubbish mountain to rise higher than Taj Mahal

Air pollution kills 100,000 Indian kids every year, study finds

Drowning in waste, Russians fume over lack of recycling

Seven wanted for 'envionmental crimes': Interpol









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.