Space Industry and Business News  
SOLAR DAILY
'Photosynthetic' algae can survive the dark
by Staff Writers
East Boothbay ME (SPX) Dec 21, 2021

Jelena Godrijan performs measurements on coccolithophores during long-term experiments at Bigelow Laboratory for Ocean Sciences. The work led to a discovery of how some species of single-celled algae survived the last mass extinction, a finding that could change how we understand global ocean processes.

More than 66 million years ago, an asteroid impact led to the extinction of almost three-quarters of life on Earth. The little life that was left had to struggle, and research into its tenacity can provide key insights into how organisms survive environmental challenges. In a new study, scientists at Bigelow Laboratory for Ocean Sciences discovered how some species of single-celled algae lived through the mass extinction, a finding that could change how we understand global ocean processes.

Coccolithophores, like most algae, are photosynthetic and utilize the sun's energy to make food. However, the aftermath of the asteroid impact was thought to have blanketed the planet with several months of darkness, a death sentence for most of the world's photosynthetic organisms. In combination with other fallout effects, this caused the extinction of more than 90 percent of all coccolithophore species, some of the most influential organisms in the ocean. However, others endured.

As part of the new study, the team conducted laboratory experiments that showed some coccolithophores could survive without light. This revealed that the organisms must have another way to produce the energy and carbon that they need.

"We've been stuck on a paradigm that algae are just photosynthetic organisms, and for a long time their capability to otherwise feed was disregarded," said Jelena Godrijan, the paper's first author, who conducted the research as a postdoctoral scientist at Bigelow Laboratory. "Getting the coccolithophores to grow and survive in the dark is amazing to me, especially if you think about how they managed to survive when animals like the dinosaurs didn't."

The study revealed how some coccolithophore species could use previously unrecognized organic compounds as carbon sources instead of carbon dioxide, which is what plants usually use. They can process dissolved organic compounds and immediately utilize them in a process called osmotrophy. The findings may explain how these organisms survive in dark conditions, such as after the asteroid impact, or deep in the ocean beneath where sunlight can reach.

The research was published in the journal New Phytologist and co-authored by two other researchers at Bigelow Laboratory, Senior Research Scientist William Balch and Senior Research Associate David Drapeau. It has far-reaching implications for life in the ocean.

Coccolithophores are integral to processes that control the global ocean and atmosphere, including the carbon cycle. They take in dissolved carbon dioxide from the atmosphere, which gets transported to the ocean floor when they die.

"That's hugely important to the distribution of carbon dioxide on Earth," said Balch. "If we didn't have this biological carbon pump, the carbon dioxide in our atmosphere would be way higher than it is now, probably over two times as much."

Coccolithophores also play an important role in mitigating ocean acidity, which can negatively affect organisms like shellfish and corals. The single-celled algae remove carbon from the water to build protective mineral plates made of limestone around themselves, which sink when they die. The process effectively pumps alkalinity deeper into the ocean, which chemically bolsters the water's ability to resist becoming more acidic.

The new study revealed that the algae also take in carbon from previously unrecognized sources deeper in the water column. This could connect coccolithophores to a new set of global processes and raises fundamental questions about their role in the ocean.

"Coccolithophores are integrated into global cycles in ways that we never imagined," Balch said. "This research really changes my thinking about food webs in dark regions where photosynthesis clearly isn't happening. It changes the paradigm."

The researchers next want to perform ocean experiments to observe how coccolithophores take in nutrients in their natural environment, especially in the dark. Godrijan hopes her work will help reveal more about the organisms, their significance, and their complex role on our planet.

"Coccolithophores are tiny, tiny creatures, but they have such huge impacts on all life that most people are not even aware of," Godrijan said. "It brings me hope for our own lives to see how such small things can have such an influence on the planet."

Research Report: "Osmotrophy of dissolved organic carbon by coccolithophores in darkness"


Related Links
Bigelow Laboratory for Ocean Sciences
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
'Wonder material' phosphorene nanoribbons live up to hype in first demonstration
London, UK (SPX) Dec 21, 2021
Researchers have incorporated phosphorene nanoribbons into new types of solar cells, dramatically improving their efficiency. Phosphorene nanoribbons (PNRs) are ribbon-like strands of the 2D material phosphorous, which, similar to graphene, are made of single-atom-thick layers of atoms. PNRs were first produced in 2019, and hundreds of theoretical studies have predicted how their properties could enhance all kinds of devices, including batteries, biomedical sensors, and quantum computers. Ho ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Selective separation could help alleviate critical metals shortage

Chinese tech giant Baidu tests metaverse waters with new app

Step forward in quest to develop living construction materials and beyond

Oracle to buy medical records firm Cerner for $28.3 bn

SOLAR DAILY
Honeywell, SES and Hughes demonstrate Multinetwork Airborne Connectivity

Airbus and OneWeb expand their partnership to connect European defence and security forces

SES Government Solutions releases new unified operational network

Northrop Grumman Australia teams with Inmarsat for sovereign satellite capability

SOLAR DAILY
SOLAR DAILY
Two new satellites mark further enlargement of Galileo

Galileo satellites given green light for launch

Brain and coat from RUAG Space for Galileo navigation satellites

Galileo pathfinder de-commissioned after 16 years of in-orbit service

SOLAR DAILY
Over 4,500 flights cancelled by Christmas day as Omicron hits holiday travel

Pentagon documents reveal 'deeply flawed' US air war: report

Covid rules shutting down Hong Kong's aviation industry: Qatar Airways boss

AFRL'S Aerospace Systems Directorate opens new subsonic wind tunnel facility

SOLAR DAILY
Intel apologizes over letter addressing US sanctions on Xinjiang

Shellac for printed circuits

Soft semiconductors that stretch like human skin can detect ultra-low light levels

Quantum algorithms bring ions to a standstill

SOLAR DAILY
L3Harris Completes Delivery of Imagers for NOAA's Advanced Environmental Satellites

Fire and ice: The puzzling link between western wildfires and Arctic sea ice

Raytheon Intelligence and Space to build Space Force weather satellite prototype

Swarm and Cluster get to the bottom of geomagnetic storms

SOLAR DAILY
Ship captain's sentence for Mauritius oil spill commuted

Residents revolt against UK sewage dumping

Tunisia recyclers struggle to tackle mountains of waste

Firm transforms waste as Morocco faces trash 'time bomb'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.