Space Industry and Business News  
TIME AND SPACE
Phonon and magnon are a couple
by Staff Writers
Seoul, South Korea (SPX) Oct 24, 2016


The animation is a simplified way to represent the vibration that occurs inside the solids and illustrates how phonons and magnons are interrelated. Phonons are the waves that make the molecules (circles) oscillate, while the magnons are shown as the movement of compass-like arrows (spins). The animation shows that the wave created by the phonons make the spins move and vice versa. While the standard linear spin wave theory says that this collective movement can last forever, this new research shows that phonons and magnons influence each other by coupling, and this collective movement is not stable. Image courtesy Park Je-Geun, IBS.

Professor Park Je-Geun, Associate Director of the Center for Correlated Electron Systems (CCES), within the Institute for Basic Science (IBS), and colleagues have observed, quantified and created a new theoretical model of the coupling of two forms of collective atomic excitation, known as magnons and phonons in crystals of the antiferromagnet manganite (Y,Lu)MnO3, a mineral made of manganese oxide and rare-earth elements called yttrium (Y) and lutetium (Lu).

This study could provide an important breakthrough for solving a 100 year old physical problem, and deepen our knowledge of an interesting class of materials called multiferroics.

While we generally think of solids as static objects, their molecules are actually in a constant state of vibration. These small vibrations are partly due to phonons and magnons, which are collective excitations and disturbances inside a crystal. Collective means that they are not limited to a single atom, but influence a group of neighbouring atoms. Phonons are uniform oscillations at a single frequency.

For example, short-wavelength phonons play a role in thermic conduction, while long-wavelength phonons give rise to sound, which is the origin of the word ("phonos" means voice in Greek). Magnons are collective perturbations of the electrons' spins, the compasses of the atoms. They influence the magnetic characteristics of the materials. This report shows, for the first time, that the two couple and as a consequence their vibratory behavior is not constant over time.

IBS scientists measured the atomic and molecular motion of (Y,Lu)MnO3 crystals by inelastic neutron scattering experiments and also derived a new theoretical model to explain what they observed experimentally. Interestingly, they had to go beyond the standard linear theory, which is normally used to interpret the measurements. The standard linear spin wave theory presumes that the vibration of magnons and phonons is harmonic and stable over time, like the oscillation of a spring without friction.

"Initially we used the simplest model, which is the linear spin wave theory without a coupling, but we realised that it was like the classic case of putting the elephant in the fridge: You can somehow do it, but the numbers become unrealistic and there is something wrong with it," explains professor Park Je-Geun. "Then we did the calculations again, this time including the coupling, and we discovered that we could explain the data and, most importantly, the final analysis gave us the numbers that make sense."

While the standard linear spin wave theory says that magnons and phonons vibrate forever and do not influence each other, a coupling would make phonons and magnons unstable, and allow an otherwise forbidden decay. For example, when a phonon becomes unstable as a consequence of the coupling to a magnon, it reduces its oscillations, decays and converts it into a magnon.

"The idea of a magnon-phonon coupling has already been around as a possible explanation for the uniquely low coefficient of thermal expansion of the invar materials. These industrially important materials have a range of uses from Swiss watches to high-speed trains, but why these materials exhibit such a counter intuitive behavior has been a puzzle for many decades," describes the professor.

While the coupling was rarely observed before, this is the first time that it has been quantified in manganite crystal: "It is a weak coupling and present only in some materials, because it needs a particular triangular atomic architecture. It also conflicts with the mainstream belief that magnons and phonons are stable over time. This could explain why the coupling has never been carefully analyzed before, and why most scientists have ignored it," comments the professor.

In the future, the team would like to study this coupling in other materials and ideally demonstrate that one can artificially convert phonons into magnons and vice versa.

The complete theoretical model and experimental observations can be read on Nature Communications.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Institute for Basic Science
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Compact graphene-based plasmon generator developed by physicists from MIPT
Moscow, Russia (SPX) Oct 20, 2016
Researchers from MIPT's Laboratory of 2D Materials' Optoelectronics, Institute of Radioengineering and Electronics, and Tohoku University (Japan) have theoretically demonstrated the possibility of creating compact sources of coherent plasmons, which are the basic building blocks for future optoelectronic circuits. The way in which the device would operate is based on the unique properties of van ... read more


TIME AND SPACE
Using Photonics to Call Home

Researchers use temperature to control droplet movement

Self-assembly of photoresponsive polymer brushes to realize advanced surfaces

Liquid-repellant tape adheres to any surface

TIME AND SPACE
Lockheed Martin gets $92 million military satellite contract modification

Russia develops new satellite communication system for military use

Arizona aerospace company wins $19M Navy satellite contract

Canada defence dept selects Newtec for first DVB-S2X Airborne Modem

TIME AND SPACE
Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

US-Russia Standoff Leaves NASA Without Manned Launch Capabilities

Swedish Space Corporation Celebrates 50th Anniversary of Esrange Space Center

TIME AND SPACE
No GPS, no problem: Next-generation navigation

Australia's coordinates out by more than 1.5 metres: scientist

US Air Force awards Lockheed Martin $395M Contract for two GPS 3 satellites

SMC exercises contract options to procure two additional GPS III satellites

TIME AND SPACE
Britain backs Heathrow airport expansion despite splits

U.K. Typhoon enhancements enter operational evaluation phase

Joint Strike Fighter an instrument of Power Projection, not just another fighter

Death sentence for Heathrow demolition village

TIME AND SPACE
Making silicon-germanium core fibers a reality

A new class of materials could realize quantum computers

Flexible optical design method for superconducting nanowire single-photon detectors

Exploring defects in nanoscale devices for possible quantum computing applications

TIME AND SPACE
NASA satellite sees sulfur dioxide diffuse across northern Iraq

The future of radar - scientific benefits and potential of TerraSAR-X and TanDEM-X

FSU geologist explores minerals below Earth's surface

Airbus Defence and Space-built PeruSAT-1 delivers first images

TIME AND SPACE
Indian roadside refuse fires produce toxic rainbow

Chinese officials 'interfered' with air pollution data: media

Dutch unveil giant vacuum to clean outside air

Brazil charges 21 over deaths in mine dam collapse: prosecutor









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.