Space Industry and Business News  
CHIP TECH
Perovskites used to make efficient artificial retina
by Staff Writers
Thuwal, Saudi Arabia (SPX) Feb 24, 2022

Representative schematic to depict that flexible capacitor as photoreceptors of the retina and the digital photograph of the flexible CPRs array shaped into hemispherical form.

An artificial electronic retina that can "see" in a similar way to the human vision system and can recognize handwritten digits has been built by KAUST researchers as they seek to develop better options for computer vision applications.

Mani Teja Vijjapu, an electrical engineering Ph.D. student, Khaled Nabil Salama and coworkers have designed and fabricated an array of photoreceptors that detect the intensity of visible light via a change in electrical capacitance, mimicking the behavior of the eye's rod retina cells. When the array was connected to an electronic CMOS-sensing circuit and a spiking neural network (a single-layer network with 100 output neurons), it was able to recognize handwritten numbers with an accuracy of around 70 percent.

"The ultimate goal of our research in this area is to develop efficient neuromorphic vision sensors to build efficient cameras for computer vision applications," explained Salama. "Existing systems use photodetectors that require power for their operation and thus consume a lot of energy, even on standby. In contrast, our proposed photoreceptors are capacitive devices that don't consume static power for their operation."

The photoreceptor array is made by sandwiching a material with suitable optical and dielectric properties between a bottom aluminum electrode and a patterned top electrode of indium tin oxide to form a pixelated array of miniature light-sensitive metal-insulator-metal capacitors. The array is made on a thin substrate of polyimide so that it is flexible and can be curved as desired, including a hemispherical shape mimicking the human eye.

In selecting materials for their photoreceptor, the KAUST team used a hybrid material of perovskite (methylammonium lead bromide (MAPbBr3)) nanocrystals embedded in terpolymer polyvinylidene fluoride trifluoroethylene-chlorofluoroethylene (PVDF-TrFE-CEF). Already of great interest in solar cell research, MAPbBr3 is a strong absorber of visible light, while PVDF-TrFE-CEF has a high dielectric constant. "We chose hybrid perovskites because of their exceptional photoelectronic properties, such as excellent light absorption, long carrier lifetime and high carrier mobility," explained Vijjapu.

Tests with a 4x4 array and LED illumination of different visible colors indicate that the optical response of the array mimics the response of the human eye with a maximum sensitivity to green light. Importantly, the photoreceptors are also found to be highly stable, with no change in response even after being stored for 129 weeks in ambient conditions.

Future plans for the team include building larger arrays of photoreceptors, optimizing the interface circuit design and employing a multilayered neural network to improve the accuracy of the recognition functionality.

Research Report: "A flexible capacitive photoreceptor for the biomimetic retina"


Related Links
King Abdullah University of Science and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
A possible paradigm shift within piezoelectricity
Copenhagen, Denmark (SPX) Feb 21, 2022
Piezoelectricity is used everywhere: Watches, cars, alarms, headphones, pickups for instruments, electric lighters and gas burners. One of the most common examples is probably the quartz watch, where the piezoelectric material quartz is a prerequisite for the watch's function. Piezoelectric materials have the particular property that their shape changes when applying an electrical voltage to the material. It also works the other way around: Exposing them to a mechanical impact will create an elect ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Using artificial intelligence to find anomalies hiding in massive datasets

A new, inexpensive catalyst speeds the production of oxygen from water

Upcycling plastic into valuable materials could make recycling pay

SpaceX to launch SpaceLogistics Mission Extension Pod for Optus satellite

CHIP TECH
Space Micro lands Space Development Agency contract for optical communications

Lockheed Martin to prototype new US Marine Corps 5G communications system

Raytheon Intelligence and Space completes Next Gen OPIR GEO Block 0 Milestone

Northrop Grumman and Kratos Demonstration Brings JADC2 Connectivity to Life

CHIP TECH
CHIP TECH
Northrop Grumman equips US Marines with Next Generation Handheld Targeting Device

The drone has landed

China completes health check on BDS satellite constellation

Providing GPS-quality timing accuracy without GPS

CHIP TECH
Controlling multiple airports from one control centre

Northrop Grumman to develop digital twin of company's testbed for digital mission systems

UAE defence ministry says to buy Chinese aircraft

Japan recovers second body from crashed F-15

CHIP TECH
Toshiba CEO resigns ahead of vote on spin-off plan

A new platform for customizable quantum devices

Perovskites used to make efficient artificial retina

Are fault-tolerant quantum computers on the horizon?

CHIP TECH
Monitoring Arctic permafrost with satellites, supercomputers, and deep learning

The jet stream that brought in Storm Eunice is moving northwards

How to look thousands of kilometers deep into the Earth?

NOAA's GOES-T Satellite Road to Launch: Final Preparations

CHIP TECH
Sri Lanka completes return of illegal waste to Britain

Fast-fashion fallout: young people in UK spurred into sewing

Italy says 'possible spill' from burning ferry

Plastic, chemical pollution beyond planet's safe limit: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.