Subscribe free to our newsletters via your
. Space Industry and Business News .




FLORA AND FAUNA
Penn research shows relationship critical for how cells ingest matter
by Staff Writers
UNiversity Park PA (SPX) Jan 28, 2015


To survive and fulfill their biological functions, cells need to take in material from their environment. In this process, proteins within the cell pull inward on its membrane, forming a pit that eventually encapsulates the material in a bubble called a vesicle. Researchers from the University of Pennsylvania have now revealed a relationship that governs this process, known as endocytosis. To get around the limitations in what they could see through their microscopes, the developed model cell membranes. The membranes, labeled red, were partially sucked into a pipette. Membrane-bending proteins, labeled green, pulled the membrane out during endocytosis. By measuring the amount of membrane left in the pipette, they could track the relationship between cell tension and the amount of membrane-bending proteins at work. Image courtesy University of Pennsylvania. For a larger version of this image please go here.

To survive and fulfill their biological functions, cells need to take in material from their environment. In this process, proteins within the cell pull inward on its membrane, forming a pit that eventually encapsulates the material in a bubble called a vesicle. Researchers from the University of Pennsylvania have now revealed a relationship that governs this process, known as endocytosis.

Their new study, published in Nature Communications, shows that the threshold at which proteins succeed at making a vesicle depends on both the quantity of membrane-bending proteins and the tension in the membrane itself. As tension on the membrane decreases, fewer proteins are needed to reach that critical mass.

Calculating where this threshold is in a given cell would be useful for understanding many biological processes. Many diseases disrupt normal endocytosis, so altering this threshold might prove to be a basis for future treatments.

This relationship between protein activity and membrane tensions may also help explain the recently discovered "ultrafast endocytosis" pathway, in which cells are sometimes able to form a vesicle in a few milliseconds, thousands of times faster than usual.

The study was conducted by Tobias Baumgart, associate professor in the Department of Chemistry in Penn's School of Arts and Sciences, and Zheng Shi, a graduate student in Baumgart's lab.

Biochemists have identified a class of proteins that facilitate endocytosis by pulling on the cellular membrane. However, exactly what role each of the members of this class of proteins play and how many are needed to form a vesicle remains unclear. Microscopy techniques that have the resolution to answer such questions eliminate the possibility of observing the endocytosis in action.

"There are powerful techniques that allow scientists to clearly see how proteins change the membrane shape at a molecular level," Shi said.

"However, it is more challenging to look at how this process changes with time with those techniques, because the samples usually must be brought into a solid state, such as by freezing them. For the same reason, it's also nearly impossible with these techniques to accurately control how tense the membranes are."

"Our approach," Baumgart said, "was based on a technique developed in our lab that can be used to control the membrane tension and look at the protein membrane-binding process in real time."

To get around the limitations in what they could see through their microscopes, the researchers developed a technique for inferring the necessary information from a model system.

They created stand-alone cell membranes, fluorescently labeled and partially sucked into a pipette. A standardized amount of suction drew a small amount of the membrane into the pipette, forming a "nose" on the otherwise spherical model cell.

The researchers exposed the model cell to a bath of membrane-bending proteins, fluorescently labeled in a different color. They attached themselves to the exterior of the model cell and began the endocytosis process in multiple places at once.

"From the perspective of the proteins," Baumgart said, "it doesn't matter that they're on the outside of the model cell. It's effectively a flat surface for them, just like the earth seems flat from our perspective."

As the proteins collectively pulled on the part of the model cell's membrane that was outside of the pipette, they were able to draw out some of the membrane that was trapped inside. This shortened the length of the "nose" left in there. By measuring this change, the researchers were able to infer the point at which endocytosis began to occur on the model cell's membrane. They could then calculate the total amount of protein involved at that point, as indicated by the intensity of their fluorescent markers.

Changing the strength of the suction pressure on the pipette also changed the overall tension on the model cells' membranes, allowing the researchers to directly observe the role tension played in regard to the number of membrane-bending proteins at work.

The interplay between these two factors means that the threshold at which endocytosis begins can be lowered not only by deploying more proteins but also by decreasing the overall tension in the membrane. Though it was not possible to study the entire mechanism in the model cells, the latter method might explain the speed with which ultrafast endocytosis begins in living cells.

"It's like getting a message to your friend by calling out rather than walking over," Baumgart said, "the tension signal literally propagates as a wave across the cell's membrane, which is much faster than making more proteins and needing them to physically get to the site where the vesicle is forming."

While their experiment only used one type of membrane-bending protein, future research using this technique will allow researchers to directly investigate the role other members of this class play in endocytosis.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Pennsylvania
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





FLORA AND FAUNA
These jellyfish aren't just drifters
Geelong, Australia (SPX) Jan 26, 2015
Jellyfish might look like mere drifters, but some of them have a remarkable ability to detect the direction of ocean currents and to swim strongly against them, according to new evidence in free-ranging barrel-jellyfish reported in the Cell Press journal Current Biology. "Detecting ocean currents without fixed visual reference points is thought to be close to impossible and is not seen, fo ... read more


FLORA AND FAUNA
Box hits Wall Street with a bang after IPO

Breakthrough lights up metamaterials

Home cheap home: Vietnam architect's quest for low-cost housing

Chemists control structure to unlock magnetization and polarization simultaneously

FLORA AND FAUNA
Third MUOS Satellite Launched And Responding To Commands

USAF orders addditional Boeing rescue radios

MUOS-3 satellite ready for launch

Marines order Harris wideband tactical radios

FLORA AND FAUNA
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Google aboard as Musk's SpaceX gets $1 bn in funding

Client Pauses Launch of Proton Rocket Carrying British Satellite

Russian firm seals $1 billion deal to supply US rocket engines

FLORA AND FAUNA
Turtles use unique magnetic compass to find birth beach

W3C and OGC to Collaborate to Integrate Spatial Data on the Web

AirAsia disappearance fuels calls for real-time tracking

Four Galileo satellites at ESA test centre

FLORA AND FAUNA
BAE Systems support contract for Typhoon fighters extended

Switzerland restricts operations of F-5E aircraft

How prepared is your pilot to deal with an emergency?

Singapore navy finds main body of crashed AirAsia jet

FLORA AND FAUNA
Solving an organic semiconductor mystery

Rice-sized laser, powered one electron at a time, bodes well for quantum computing

New laser for computer chips

Smart keyboard cleans and powers itself -- and can tell who you are

FLORA AND FAUNA
Subglacial Lakes Seen Refilling in Greenland

Airbus Defence and Space, TerraNIS and ARTAL Technologies join forces

All instruments for GOES-R now integrated with spacecraft

NASA Satellite Set to Get the Dirt on Soil Moisture

FLORA AND FAUNA
Soils could keep contaminants in wastewater from reaching groundwater

Simple soil mixture reverses toxic stormwater effects

China air quality dire but improving: Greenpeace

A spoonful of sugar in silver nanoparticles to regulate their toxicity




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.