Space Industry and Business News  
EARLY EARTH
Oxygen linked with the boom and bust of early animal evolution
by Staff Writers
Leeds UK (SPX) May 08, 2019

file illustration only

Extreme fluctuations in atmospheric oxygen levels corresponded with evolutionary surges and extinctions in animal biodiversity during the Cambrian explosion, finds new study led by UCL and the University of Leeds.

The Cambrian explosion was a crucial period of rapid evolution in complex animals that began roughly 540 million years ago. The trigger for this fundamental phase in the early history of animal life is a subject of ongoing biological debate.

The study, published in Nature Geoscience by scientists from the UK, China and Russia, gives strong support to the theory that oxygen content in the atmosphere was a major controlling factor in animal evolution.

The study is the first to show that during the Cambrian explosion there was significant correlation between surges in oxygen levels and bursts in animal evolution and biodiversity, as well as extinction events during periods of low oxygen.

Dr Tianchen He, study lead author and postdoctoral researcher at the University of Leeds, began this research while at UCL. He said: "The complex creatures that came about during the Cambrian explosion were the precursors to many of the modern animals we see today. But because there is no direct record of atmospheric oxygen during this time period it has been difficult to determine what factors might have kick started this crucial point in evolution.

"By analysing the carbon and sulphur isotopes found in ancient rocks, we are able to trace oxygen variations in Earth's atmosphere and shallow oceans during the Cambrian Explosion. When compared to fossilised animals from the same time we can clearly see that evolutionary radiations follow a pattern of 'boom and bust' in tandem with the oxygen levels.

"This strongly suggests oxygen played a vital role in the emergence of early animal life."

Study co-author Professor Graham Shields from UCL Earth Sciences, said: "This is the first study to show clearly that our earliest animal ancestors experienced a series of evolutionary radiations and bottlenecks caused by extreme changes in atmospheric oxygen levels.

"The result was a veritable explosion of new animal forms during more than 13 million years of the Cambrian Period. In that time, Earth went from being populated by simple, single-celled and immobile organisms to hosting the wonderful variety of intricate, energetic life forms we see today."

The team analysed the carbon and sulphur isotopes from marine carbonate samples collected from sections along the Aldan and Lena rivers in Siberia. During the time of the Cambrian explosion this area would have been a shallow sea and the home for the majority of animal life on Earth.

The lower Cambrian strata in Siberia are composed of continuous limestone with rich fossil records and reliable age constraints, providing suitable samples for the geochemical analyses. The isotope signatures in the rocks relate to the global production of oxygen, allowing the team to determine oxygen levels present in the shallow ocean and atmosphere during the Cambrian Period.

Study co-author Dr Benjamin Mills, from the School of Earth and Environment at Leeds, said: "The Siberian Platform gives us a unique window into early marine ecosystems. This area contains over half of all currently known fossilised diversity from the Cambrian explosion.

"Combining our isotope measurements with a mathematical model lets us track the pulses of carbon and sulphur entering the sediments in this critical evolutionary cradle. Our model uses this information to estimate the global balance of oxygen production and destruction, giving us new insight into how oxygen shaped the life we have on the planet today."

Study co-author Maoyan Zhu from Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, said: "Understanding what triggered the Cambrian explosion requires multidisciplinary study. That's why with Graham Shields we organized together such a multidisciplinary team funded by NERC and NSFC in past years. I am so excited about the results through this collaborative project."

"On the other hand, it took a long time to get this result. We already got samples from Siberia in 2008. The sections in Siberia are difficult to access. It took time for us to organize the expedition and collect the samples there. Without support from Russian colleagues, we could not do the project."

Study co-author Andrey Yu Zhuravlev from Lomonosov Moscow State University said: "This has been an incredibly successful and exciting joint study. The question of the Cambrian Explosion trigger has puzzled scientists for years. Now, the results give us convincing evidence to link the rapid appearance of animals as well as mass extinction during the early Cambrian with oxygen."

Research Report: "Possible links between extreme oxygen perturbations and the Cambrian radiation of animals"


Related Links
University of Leeds
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Miniature relative of T. rex identified by paleontologists in New Mexico
Washington (UPI) May 7, 2019
Paleontologists have discovered a new relative of Tyrannosaurus rex, the infamous dinosaur predator. Unlike its distant cousin, the new species, Suskityrannus hazelae, stood just three feet tall and stretched nine feet from head to tip of the tail. The dinosaur remains were originally found by 16-year-old Sterling Nesbit during a dig in New Mexico in 1998. Twenty years later, Nesbit, now an assistant professor in the geosciences department at Virginia Tech, is the lead author on a paper - publ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Recognising sustainable behaviour in orbit

Physicists propose perfect material for lasers

US and Japanese scientists conduct joint composites study

Gold helps CT scans pick up the finest surface structures

EARLY EARTH
Airbus and Thales Alenia Space to build two SpainSAT NG satellites

Boeing awarded $605M for Air Force's 11th WGS comms satellite

SLAC develops novel compact antenna for communicating where radios fail

US Army selects Hughes for cooperative effort to upgrades NextGen Friendly Forces System

EARLY EARTH
EARLY EARTH
GSA launches testing campaign for agriculture receivers

CGI and Thales sign contract for secure Galileo satellite navigation services

China launches new BeiDou satellite

Industry collaboration on avionics paves the way for GAINS navigation demonstration flights

EARLY EARTH
Czech Republic approved for Viper, Black Hawk helicopter purchases

Pilot says lightning caused deadly Russian crash landing

Japan finds parts of crashed F35 fighter jet

Austria hands over MiG 'symbol' of Croatian independence war

EARLY EARTH
The evolution of skyrmions in multilayers and their topological Hall signature

HKUST physicist contributes to new record of quantum memory efficiency

Bridge over coupled waters: Scientists 3D-print all-liquid 'lab on a chip'

New robust device may scale up quantum tech, researchers say

EARLY EARTH
Ozone monitoring team spots "fingerprints" on Earth's atmosphere

Scientists track giant ocean vortex from space

Global TanDEM-X forest map is available

SFL highlights microspace EO missions at IAA Symposium in Berlin

EARLY EARTH
The only way is down: subterranean survival warning

Mozambique community shattered by trash deluge

Carbios plastic bottle recycling picks up backers

China plastic waste ban throws global recycling into chaos









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.