Space Industry and Business News
STELLAR CHEMISTRY
Our surprising magnetic galaxy
The white lines superimposed on this image of the Sagittarius arm of the Milky Way show the polarization, or orientation, of light. This correlates with the orientation of local magnetic field lines. Combined, this information builds a detailed map of the magnetic field in that arm of the galaxy.
Our surprising magnetic galaxy
by Staff Writers for UTokyo News
Tokyo, Japan (SPX) Jan 12, 2024

A team of astronomers including those from the University of Tokyo created the first-ever map of magnetic field structures within a spiral arm of our Milky Way galaxy. Previous studies on galactic magnetic fields only gave a very general picture, but the new study reveals that magnetic fields in the spiral arms of our galaxy break away from this general picture significantly and are tilted away from the galactic average by a high degree. The findings suggest magnetic fields strongly impact star-forming regions which means they played a part in the creation of our own solar system.

It might come as a surprise to some that magnetic fields can exist on scales larger than a planet. Most of our daily experience with magnetic fields involves either sticking things to our refrigerator, or perhaps using a compass to point north.

The latter shows the existence of magnetic fields generated by our planet. Our sun also creates a vast magnetic field, and this can affect phenomena like solar flares. But magnetic fields that span the galaxy are almost too large to comprehend, and yet they likely have a role in the formation of stars and planets.

"Until now, all observations of magnetic fields within the Milky Way led to a very limited model that was uniform all over and largely matched the disc shape of the galaxy itself," said Assistant Professor Yasuo Doi from the Department of Earth Science and Astronomy.

"Thanks in part to telescope facilities at Hiroshima University capable of measuring polarized light to help us ascertain magnetic signatures, and the Gaia satellite launched by the European Space Agency in 2013, which specialized in measuring the distances to stars, we are able to build a better model with finer details in three dimensions. We focused on a specific area, the Sagittarius arm of our spiral galaxy (we are in the neighboring Orion arm) and found the dominant magnetic field there breaks away from the plane of the galaxy significantly."

Previous models and observations could only imagine a smooth and largely homogeneous magnetic field in our galaxy; whereas the new data show that although magnetic field lines in the spiral arms do roughly align with the galaxy at large, at small scales the lines are actually spread out across a range of distances due to various astrophysical phenomena such as supernovae and stellar winds. The galactic magnetic fields are also incredibly weak, around 100,000 times weaker than Earth's own magnetic field.

Despite this, however, over long time spans, gas and dust in interstellar space are accelerated by these fields which explains the presence of some stellar nurseries - star-forming regions - that cannot be explained by gravity alone. This finding implies further mapping of the magnetic fields within our galaxy could help better explain the nature and evolution of the Milky Way and other galaxies too.

"I am personally intrigued by the foundational process of star formation, pivotal to the creation of life, including ourselves, and I aim to grasp this phenomenon in its entirety with time," said Doi.

"We aim to further our observations and build better models of galactic magnetic field structures. This endeavor aims to provide observational insights into the accumulation of gas fueling active star formation within our galaxy and its historical development."

Research Report:Tomographic Imaging of the Sagittarius Spiral Arm's Magnetic Field Structure

Related Links
University of Tokyo
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Astronomers Find Spark of Star Birth Across Billions of Years
Boston MA (SPX) Jan 12, 2024
These four images represent a sample of galaxy clusters that are part of the largest and most complete study to learn what triggers stars to form in the universe's biggest galaxies. This research, made using NASA's Chandra X-ray Observatory and other telescopes, showed that the conditions for stellar conception in these exceptionally massive galaxies have not changed over the last ten billion years. Galaxy clusters are the largest objects in the universe held together by gravity and contain huge a ... read more

STELLAR CHEMISTRY
NASA's Transition to Commercial Space Networks: A Leap in Wideband Communication

Laser Instrument on NASA's LRO Successfully 'Pings' Indian Moon Lander

Intercontinental team to grow protein crystals in space

ESA advances satellite testing capabilities at Europe's largest thermal vacuum facility

STELLAR CHEMISTRY
Lockheed Martin secures $890M SDA contract for advanced missile tracking satellites

Rocket Lab secures $515M contract with Space Development Agency for Tranche 2 constellation

Viasat Secures Major U.S. Air Force Contract for Advanced Tech Integration

HawkEye 360's Pathfinder constellation complete five years of Advanced RF Detection

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Viasat Leads Historic UK SBAS Flight Trial, Showcasing Advanced GPS Capabilities

GMV reinforces satellite expertise with new Galileo Operations Center in Madrid

Airbus presents first flight model structure for Galileo Second Generation

Galileo Gen2 satellite production commences at Airbus facility

STELLAR CHEMISTRY
Mapping the Milky Way as GUSTO nears record flight duration for balloon over Antarctica

France orders 42 new Rafale fighter jets

Ukraine says hit two Russian command aircraft

Volocopter flying taxi seeks to seduce Paris

STELLAR CHEMISTRY
Taiwan's TSMC to launch Japan chipmaking plant in February

Solid-state qubits: Forget about being clean, embrace mess

Breakthrough in controlling magnetization for spintronics

Towards realizing eco-friendly and high-performance thermoelectric materials

STELLAR CHEMISTRY
Climate change isn't producing expected increase in atmospheric moisture over dry regions

Pixxel inaugurates advanced satellite manufacturing hub in India

NASA's PACE To Investigate Oceans, Atmospheres in Changing Climate

Sidus Marks Key Progress in AI sat tech ahead of LizzieSat-1 launch

STELLAR CHEMISTRY
Senegal's Hann Bay, a paradise turned sewer, awaits clean up

A new way to swiftly eliminate micropollutants from water

Toxic heavy metal pollution in the Southern Hemisphere over the last 2,000 years

Spain politicians bicker as plastic 'nurdle' spill swamps beaches

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.