Space Industry and Business News  
IRON AND ICE
'Oumuamua isn't made from molecular hydrogen ice after all
by Staff Writers
Cambridge MA (SPX) Aug 18, 2020

stock iillustration

The debate over the origins and molecular structure of 'Oumuamua continues with an announcement in the Astrophysical Journal Letters that despite earlier promising claims, the interstellar object is not made of molecular hydrogen ice after all.

The earlier study, published by Seligman and Laughlin in 2020 - after observations by the Spitzer Space Telescope set tight limits on the outgassing of carbon-based molecules - suggested that if 'Oumuamua were a hydrogen iceberg, then the pure hydrogen gas that gives it its rocket-like push would have escaped detection. But scientists at the Center for Astrophysics | Harvard and Smithsonian (CfA) and the Korea Astronomy and Space Science Institute (KASI) were curious whether a hydrogen-based object could actually have made the journey from interstellar space to our solar system.

"The proposal by Seligman and Laughlin appeared promising because it might explain the extreme elongated shape of 'Oumuamua as well as the non-gravitational acceleration. However, their theory is based on an assumption that H2 ice could form in dense molecular clouds. If this is true, H2 ice objects could be abundant in the universe, and thus would have far-reaching implications. H2 ice was also proposed to explain dark matter, a mystery of modern astrophysics," said Dr. Thiem Hoang, senior researcher in the theoretical astrophysics group at KASI and lead author on the paper.

"We wanted to not only test the assumptions in the theory but also the dark matter proposition." Dr. Avi Loeb, Frank B. Baird Professor of Science at Harvard and co-author on the paper, added, "We were suspicious that hydrogen icebergs could not survive the journey - which is likely to take hundreds of millions of years - because they evaporate too quickly, and as to whether they could form in molecular clouds."

Traveling at a blistering speed of 196,000 mph in 2017, 'Oumuamua was first classified as an asteroid, and when it later sped up, was found to have properties more akin to comets. But the 0.2 km radius interstellar object didn't fit that category, either, and its point of origin has remained a mystery.

Researchers focused on the giant molecular cloud (GMC) W51 - one of the closest GMCs to Earth at just 17,000 light-years away - as a potential point of origin for 'Oumuamua, but hypothesize that it simply could not have made the journey intact. "The most likely place to make hydrogen icebergs is in the densest environments of the interstellar medium. These are giant molecular clouds," said Loeb, confirming that these environments are both too far away and are not conducive to the development of hydrogen icebergs.

An accepted astrophysical origin for solid objects is growth by sticky collisions of dust, but in the case of a hydrogen iceberg, this theory could not hold together. "An accepted route to form a km-sized object is first to form grains of micron-size, then such grains grow by sticky collisions," said Hoang. "However, in regions with high gas density, collisional heating by gas collisions can rapidly sublimate the hydrogen mantle on the grains, preventing them from growing further."

Although the study explored destruction of H2 ice by multiple mechanisms including interstellar radiation, cosmic rays, and interstellar gas, sublimation due to heating by starlight has the most destructive effect, and according to Loeb, "Thermal sublimation by collisional heating in GMCs could destroy molecular hydrogen icebergs of 'Oumuamua-size before their escape into the interstellar medium."

This conclusion precludes the theory that 'Oumuamua journeyed to our solar system from a GMC, and further precludes the proposition of primordial snowballs as dark matter. Evaporative cooling in these situations does not reduce the role of thermal sublimation by starlight in the destruction of H2 ice objects.

'Oumuamua first gained notoriety in 2017 when it was discovered screaming through space by observers at Haleakala Observatory, and has since been the subject of ongoing studies. "This object is mysterious and difficult to understand because it exhibits peculiar properties we have never seen from comets and asteroids in our solar system," said Hoang.

While the nature of the interstellar traveler is currently an unsolved mystery, Loeb suggests it won't remain so for much longer, especially if it's not alone. "If 'Oumuamua is a member of a population of similar objects on random trajectories, then the Vera C. Rubin Observatory (VRO), which is scheduled to have its first light next year, should detect roughly one 'Oumuamua-like object per month. We will all wait with anticipation to see what it will find."

Research Report: "Destruction of Molecular Hydrogen Ice and Implications for 1I/2017 U1 ('Oumuamua)"


Related Links
Center For Astrophysics | Harvard and Smithsonian
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
Second rehearsal puts OSIRIS-REx on path to sample collection
Tucson AZ (SPX) Aug 14, 2020
Yesterday, the OSIRIS-REx spacecraft performed its final practice run of the sampling sequence, reaching an approximate altitude of 131 feet (40 meters) over sample site Nightingale before executing a back-away burn. Nightingale, OSIRIS-REx's primary sample collection site, is located within a crater in Bennu's northern hemisphere. The approximately four-hour "Matchpoint" rehearsal took the spacecraft through the first three of the sampling sequence's four maneuvers: the orbit departure burn, the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
New ground station brings laser communications closer to reality

NASA selects SwRI to participate in $6B Rapid Spacecraft Acquisition IV Contract

Return of the LIDAR

Novel method of heat conduction could be a game changer for server farms and aircraft

IRON AND ICE
Airbus to build BADR-8 satellite for Arabsat

U.S. Army readies 'Capability Set '23' for communications modernization

Northrop Grumman to provide key electronic warfare capabilities for AC MC-130J aircraft

South Korea's first military satellite launched

IRON AND ICE
IRON AND ICE
Launch of Russia's Glonass-K satellite postponed until October

Tech combo is a real game-changer for farming

GPS 3 receives operational acceptance

Air Force navigation technology satellite passes critical design review

IRON AND ICE
U.S. B-1 Lancers, B-2 stealth bombers conduct missions in Indo-Pacific

Artificial intelligence wins over man in simulated aerial dogfight

U.S. Army pilot commitment extended to 10 years

NATO receives 2nd Airbus A330 for fleet of multi-role aircraft

IRON AND ICE
Pentagon: It's time to bring microelectronics manufacturing to the U.S.

DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

Artificial materials for more efficient electronics

Spin, spin, spin: researchers enhance electron spin longevity

IRON AND ICE
Gaofen 7 observation satellite starts formal duties

Meteorological satellites keep eye on clouds

Ball Aerospace completes airborne flights of small instruments to enable future Landsat missions

China set to launch two advanced marine satellites in 2021

IRON AND ICE
Plastic debris leaches toxins into the stomachs of sea birds

Salvors begin sinking ship which ran aground off Mauritius

Mauritius arrests captain of ship in oil spill: police

Atlantic plastic levels far higher than thought: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.