Subscribe free to our newsletters via your
. Space Industry and Business News .




SOLAR DAILY
Oregon researchers glimpse pathway of sunlight to electricity
by Staff Writers
Eugene OR (SPX) Dec 19, 2014


Andrew H. Marcus, left, and Mark C. Lonergan, both of the University of Oregon, stand by UO spectroscopy equipment that was adapted to study photon interactions in photocells that used lead-sulfide quantum dots as photoactive semiconductor material. Image courtesy University of Oregon.

Four pulses of laser light on nanoparticle photocells in a University of Oregon spectroscopy experiment has opened a window on how captured sunlight can be converted into electricity. The work, which potentially could inspire devices with improved efficiency in solar energy conversion, was performed on photocells that used lead-sulfide quantum dots as photoactive semiconductor material.

The research is detailed in a paper placed online by the journal Nature Communications.

In the process studied, each single photon, or particle of sunlight, that is absorbed potentially creates multiple packets of energy called excitons. These packets can subsequently generate multiple free electrons that generate electricity in a process known as multiple exciton generation (MEG). In most solar cells, each absorbed photon creates just one potential free electron.

Multiple exciton generation is of interests because it can lead to solar cells that generate more electrical current and make them more efficient. The UO work shines new light on the little understood process of MEG in nanomaterials.

While the potential importance of MEG in solar energy conversion is under debate by scientists, the UO spectroscopy experiment -- adapted in a collaboration with scientists at Sweden's Lund University -- should be useful for studying many other processes in photovoltaic nanomaterials, said Andrew H. Marcus, professor of physical chemistry and head of the UO Department of Chemistry and Biochemistry.

Spectroscopic experiments previously designed by Marcus to perform two-dimensional fluorescence spectroscopy of biological molecules were adapted to also measure photocurrent. "Spectroscopy is all about light and molecules and what they do together," Marcus said. "It is a really great probe that helps to tell us about the reaction pathway that connects the beginning of a chemical or physical process to its end.

"The approach is similar to looking at how molecules come together in DNA, but instead we looked at interactions within semiconductor materials," said Marcus, an affiliate in UO's Institute of Molecular Biology, Materials Science Institute and Oregon Center for Optics.

"Our method made it possible to look at electronic pathways involved in creating multiple excitons. The existence of this phenomenon had only been inferred through indirect evidence. We believe we have seen the initial steps that lead to MEG-mediated photo conductivity."

The controlled sequencing of laser pulses allowed the seven-member research team to see -- in femtoseconds (a femtosecond is one millionth of one billionth of a second) -- the arrival of light, its interaction with resting electrons and the subsequent conversion into multiple excitons. The combined use of photocurrent and fluorescence two-dimensional spectroscopy, Marcus said, provided complementary information about the reaction pathway.

UO co-author Mark C. Lonergan, professor of physical and materials chemistry, who studies electrical and electrochemical phenomena in solid-state systems, likened the processes being observed to people moving through a corn maze that has one entrance and three exits.

People entering the maze are photons. Those who exit quickly represent absorbed photons that generate unusable heat. People leaving the second exit represent other absorbed photons that generate fluorescence but not usable free electrons. People leaving the final exit signify usable electrical current.

"The question we are interested in is exactly what does the maze look like," Lonergan said.

"The problem is we don't have good techniques to look inside the maze to discover the possible pathways through it. The techniques that Andy has developed basically allow us to see into the maze by encoding what is coming out of the system in terms of exactly what is going in. We can visualize what is going on, whether two people coming into the maze shook hands at some point and details about the pathway that led them to come out the electricity exit."

The project began when Tonu Pullerits, who studies ultrafast photochemistry in semiconductor molecular materials at Lund University, approached Marcus about adopting his spectroscopic system to look at solar materials. Khadga J. Karki, a postdoctoral researcher in Pullerits' lab, then visited the UO and teamed with the Marcus and Lonergan groups to reconfigure the equipment.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Oregon
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Galenfeha Completes Successful Testing Of Solar Power Station
Bedford TX (SPX) Oct 22, 2014
Galenfeha is pleased to announce that the Company has completed successful field testing of its portable, solar regenerated power supply station. Galenfeha conducted field-testing for a major petroleum production company in the Haynesville shale area of Louisiana. The company's client was seeking a viable solution to power a chemical injection pump station. The location historically ... read more


SOLAR DAILY
Breakthrough in predictions of pressure-dependent combustion reactions

Back to future with Roman architectural concrete

Earth's most abundant mineral finally has a name

'Mind the gap' between atomically thin materials

SOLAR DAILY
MUOS-3 Encapsulated In Launch Vehicle Fairing

Cubic Corporation acquires DTECH Labs

Australia, U.S. order military radio systems

Lockheed Martin opens MUOS application development facility

SOLAR DAILY
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Russian Space Agency Pushes Back Earth Imaging Satellite Launch to Friday

State Spaceports Receive Federal Funding

Arianespace sets new operational benchmarks on its latest Soyuz success

SOLAR DAILY
GPS analysts bridge gap between launch, orbit

China to Roll Out Own Global Navigation System by 2020

NIST study 'makes the case' for RFID forensic evidence management

Galileo satellite recovered and transmitting navigation signals

SOLAR DAILY
Airbus will not scrap A380s despite order drought: CEO

Air China orders 60 Boeing 737s for more than $6 bn

BOC Aviation adds two more Boeing jets to earlier order spree

3 countries eye pooled acquisition, operation of airlifters

SOLAR DAILY
Switching to spintronics

Germanium comes home to Purdue for semiconductor milestone

Room temp quantum optics chip geneates tunable photon-pair spectrum

Unusual electronic state found in new class of unconventional superconductors

SOLAR DAILY
Salinity matters

CryoSat extends its reach on the Arctic

China publishes images captured by CBERS-4 satellite

ADS to build Falcon Eye Earth-observation system for UAE

SOLAR DAILY
Pilot plant for the removal of extreme gas charges from deep waters

Bangladesh development 'threatens fragile Sundarbans

More research links pollution exposure during pregnancy to autism

Super-bacteria found in Rio bay ahead of 2016 Olympic sailing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.