Space Industry and Business News  
CHIP TECH
Optical wiring for large quantum computers
by Staff Writers
Zurich, Switzerland (SPX) Oct 23, 2020

The ion-trap chip with integrated waveguides. The laser light is fed into the chip via the optical fibres on the right.

Hitting a specific point on a screen with a laser pointer during a presentation isn't easy - even the tiniest nervous shaking of the hand becomes one big scrawl at a distance. Now imagine having to do that with several laser pointers at once.

That is exactly the problem faced by physicists who try to build quantum computers using individual trapped atoms. They, too, need to aim laser beams - hundreds or even thousands of them in the same apparatus - precisely over several metres such as to hit regions only a few micrometres in size that contain the atoms. Any unwanted vibration will severely disturb the operation of the quantum computer.

At ETH in Zurich, Jonathan Home and his co-workers at the Institute for Quantum Electronics have now demonstrated a new method that allows them to deliver multiple laser beams precisely to the right locations from within a chip in such a stable manner that even the most delicate quantum operations on the atoms can be carried out.

Aiming for the quantum computer
To build quantum computers has been an ambitious goal of physicists for more than thirty years. Electrically charged atoms - ions - trapped in electric fields have turned out to be ideal candidates for the quantum bits or qubits, which quantum computers use for their calculations. So far, mini computers containing around a dozen qubits could be realized in this way.

"However, if you want to build quantum computers with several thousand qubits, which will probably be necessary for practically relevant applications, current implementations present some major hurdles," says Karan Mehta, a postdoc in Home's laboratory and first author of the study recently published in the scientific journal "Nature".

Essentially, the problem is how to send laser beams over several metres from the laser into a vacuum apparatus and eventually hit the bull's eye inside a cryostat, in which the ion traps are cooled down to just a few degrees above absolute zero in order to minimize thermal disturbances.

Optical setup as an obstacle
"Already in current small-scale systems, conventional optics are a significant source of noise and errors - and that gets much harder to manage when trying to scale up", Mehta explains. The more qubits one adds, the more complex the optics for the laser beams becomes which is needed for controlling the qubits.

"This is where our approach comes in", adds Chi Zhang, a PhD student in Home's group: "By integrating tiny waveguides into the chips that contain the electrodes for trapping the ions, we can send the light directly to those ions. In this way, vibrations of the cryostat or other parts of the apparatus produce far less disturbance."

The researchers commissioned a commercial foundry to produce chips which contain both gold electrodes for the ion traps and, in a deeper layer, waveguides for laser light. At one end of the chips, optical fibres feed the light into the waveguides, which are only 100 nanometres thick, effectively forming optical wiring within the chips. Each of those waveguides leads to a specific point on the chip, where the light is eventually deflected towards the trapped ions on the surface.

Work from a few years ago (by some of the authors of the present study, together with researchers at MIT and MIT Lincoln Laboratory) had demonstrated that this approach works in principle. Now the ETH group has developed and refined the technique to the point where it is also possible to use it for implementing low-error quantum logic gates between different atoms, an important prerequisite for building quantum computers.

High-fidelity logic gates
In a conventional computer chip, logic gates are used to carry out logic operations such as AND or NOR. To build a quantum computer, one has make sure that it can to carry out such logic operations on the qubits.

The problem with this is that logic gates acting on two or more qubits are particularly sensitive to disturbances. This is because they create fragile quantum mechanical states in which two ions are simultaneously in a superposition, also known as entangled states.

In such a superposition, a measurement of one ion influences the result of a measurement on the other ion, without the two being in direct contact. How well the production of those superposition states works, and thus how good the logic gates are, is expressed by the so-called fidelity.

"With the new chip we were able to carry out two-qubit logic gates and use them to produce entangled states with a fidelity that up to now could only be achieved in the very best conventional experiments", says Maciej Malinowski, who was also involved in the experiment as a PhD student.

The researchers have thus shown that their approach is interesting for future ion trap quantum computers as it is not just extremely stable, but also scalable. They are currently working with different chips that are intended to control up to ten qubits at a time. Furthermore, they are pursuing new designs for fast and precise quantum operations that are made possible by the optical wiring.

Research Report: Integrated optical multi-ion quantum logic


Related Links
ETH Zurich
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Researching the chips of the future
Valencia, Spain (SPX) Oct 20, 2020
The chips of the future will include photonics and electronics; they will have a bandwidth, speed and processing and computing abilities that are currently unthinkable; they will make it possible to integrate many other components and their capabilities will increase exponentially compared to electronic chips. In all, they will be essential in many fields; they will bring us a little closer, for example, to quantic computing or to the autonomous car. The key resides in programmable photonics, a te ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
UCI materials scientists discover design secrets of nearly indestructible insect

Scientists discover unusual materials properties at ultrahigh pressure

Bringing construction projects to the digital world

When honey flows faster than water

CHIP TECH
WGS-11+ Satellite Completes Preliminary Design Review

Defense Dept. awards $600M in contracts for 5G testing at five bases

Isotropic Systems and SES GS to trail next-gen multi-beam antenna technologies for US forces

Swedish Space Corporation to cease assisting Chinese companies operate satellites

CHIP TECH
CHIP TECH
China's self-developed BDS sees thriving applications

GPS-enabled decoy eggs may help track, catch sea turtle egg traffickers

Fourth GPS 3 Satellite Encapsulated Ahead of Launch

Government to explore new ways of delivering 'sat nav' for the UK

CHIP TECH
Cathay Pacific to cut thousands of jobs, close subsidiary airline

Cathay Pacific to cut workforce by nearly a quarter

Fairchild, Shaw and Ellsworth AFBs make productivity gains

Low risk of Covid infection on planes if masks worn: US military

CHIP TECH
Researchers discover a uniquely quantum effect in erasing information

SK Hynix in $9 bn deal for Intel's flash memory chip business

SK Hynix in $9 bn deal for Intel's flash memory chip business

Researching the chips of the future

CHIP TECH
ICEYE shares nearly 18,000 satellite image archive under Creative Commons License

Serco Europe launches space research incubator in Italy

Two US satellites fail to enter orbit due to abnormal situation: Reports

Nanohmics to test ultra-compact hyperspectral imager on the ISS

CHIP TECH
Pioneering LADAR system aims to revolutionize marine plastic detection

Bottle-fed babies ingest 'millions' of microplastics: study

Ancient trash heaps in Israel show waste management changes among settlements

Pandemic caused 'unprecedented' emissions drop: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.