Space Industry and Business News  
Opposites Interfere

-
by Staff Writers
New York NY (SPX) Jul 27, 2007
In a classic physics experiment, photons (light particles), electrons, or any other quantum particles are fired, one at a time, at a sheet with two slits cut in it that sits in front of a recording plate. For photons, a photographic plate reveals an oscillating pattern (bands of light and dark) - a sign that each particle, behaving like a wave, has somehow passed through both slits simultaneously and interfered, canceling the light in some places and enhancing it in others.

If single quantum particles can exist in two places at once, and interfere with themselves in predictable patterns, what happens when there are two quantum particles? Can they interfere with each other? Prof. Mordehai Heiblum of the Weizmann Institute's Condensed Matter Physics Department and his research team have been experimenting with electrons fired across special semiconductor devices.

Quantum mechanics predicts that two electrons can indeed cause the same sort of interference as that of a single electron - on one condition: that the two are identical to the point of being indistinguishable. Heiblum and his team showed that, because of such interference, these two particles are entangled - the actions of one are inextricably tied to the actions of the other - even though they come from completely different sources and never interact with each other. The team's findings recently appeared in the journal Nature.

Dr. Izhar Neder and Nissim Ofek, together with Drs. Yunchul Chung, Diana Mahalu, and Vladimir Umansky, fired such identical electron pairs from opposite sides of their device, toward detectors that were placed two to a side of the device. In other words, each pair of detectors could detect the two particles arriving in one of two ways: particle 1 in detector 1 and particle 2 in detector 2, or, alternatively, particle 2 in detector 1 and particle 1 in detector 2. Since these two "choices" are indistinguishable, the choices interfere with each other in the same way as the two possible paths of a single quantum particle interfere.

The scientists then investigated how the choice of one particle affected the pathway taken by the other, and found strong correlations between them. These correlations could be affected by changing, for example, the length of the path taken by one particle. This is the first time an oscillating interference pattern between two identical particles has been observed, proving, once again, the success of quantum theory.

Prof. Mordehai Heiblum's research is supported by the Joseph H. and Belle R. Braun Center for Submicron Research; the Wolfson Family Charitable Trust; Hermann Mayer and Dan Mayer; and Mr. Roberto Kaminitz, Sao Paulo, Brazil. Prof. Heiblum is the incumbent of the Alex and Ida Sussman Professorial Chair in Submicron Electronics.

Related Links
Weizmann Institute of Science
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Researchers Produce Firsts With Bursts Of Light
Upton NY (SPX) Jul 27, 2007
Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have generated extremely short pulses of light that are the strongest of their type ever produced and could prove invaluable in probing the ultra-fast motion of atoms and electrons. The scientists also made the first observations of a phenomenon called cross-phase modulation with this high-intensity light - a characteristic that could be used in numerous new light source technologies.







  • Satellite Multimedia For Mobile Phones
  • Vizada Launches SkyFile Access For Better Mobile Satellite Data Transfer
  • Bringing Mobile Cellular Phones To The Skyways
  • Rockwell Collins And ARINC Sign Agreement For Broadband Offering

  • India Plans To Double Satellite Launches Within Five Years
  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Sea Launch To Resume Zenit Launches In October

  • Boeing Flies Blended Wing Body Research Aircraft
  • Steering Aircraft Clear Of Choppy Air
  • EAA AirVenture 2007
  • Sensors May Monitor Aircraft For Defects Continuously

  • LockMart And Northrop Grumman TSAT Team Announces Partnership With Juniper Networks
  • Northrop Grumman Wins Production Contract For E-2D Advanced Hawkeye
  • Raytheon To Develop Next Generation DIB Architecture
  • ViaSat Wins Order In MIDS Tactical Network Terminal Lot 8 Award

  • Russia To Have Integrated Radar System By 2010
  • Laser Sets Records In Power And Energy Efficiency
  • UCF And Holochip Announce Global Licensing Agreement For Zoom Lens Patents
  • Nature's Secrets Yield New Adhesive Material

  • New SIDC Commander Has The Wright Stuff
  • NASA Administrator Names Ryschkewitsch As New Chief Engineer
  • Hall Appoints Feeney To Top GOP Position On Space And Aeronautics Subcommittee
  • Dodgen Joins Northrop Grumman As Vice President Of Strategy For Missile Systems Business

  • DigitalGlobe Expands Commercial Imagery Distribution Network In Australia And New Zealand
  • DMCii Wins ESA Satellite Imaging Contract
  • Campaign Prepares For Future Land-Surface Monitoring
  • Envisat Captures Breath Of Volcano

  • ShoZu One-Click Image Upload Service To Be Embedded In Samsung Handsets
  • T-Mobile Austria Customers Can Now Avoid Becoming Lost With GPS SatNav From TeleNav
  • Cell Phones And PDAs Revolutionize How Consumers Find Homes On REALTOR.com
  • Salco Technologies Obtains Intrinsically Safe UL913 Certifications For Remote Monitoring Equipment

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement