Space Industry and Business News  
CHIP TECH
'Odd couple' monolayer semiconductors align to advance optoelectronics
by Staff Writers
Oak Ridge TN (SPX) Apr 22, 2016


Light drives the migration of charge carriers (electrons and holes) at the juncture between semiconductors with mismatched crystal lattices. These heterostructures hold promise for advancing optoelectronics and exploring new physics. The schematic's background is a scanning transmission electron microscope image showing the bilayer in atomic-scale resolution. Image courtesy Oak Ridge National Laboratory, US Dept. of Energy. Image by Xufan Li and Chris Rouleau. For a larger version of this image please go here.

Epitaxy, or growing crystalline film layers that are templated by a crystalline substrate, is a mainstay of manufacturing transistors and semiconductors. If the material in one deposited layer is the same as the material in the next layer, it can be energetically favorable for strong bonds to form between the highly ordered, perfectly matched layers. In contrast, trying to layer dissimilar materials is a great challenge if the crystal lattices don't match up easily. Then, weak van der Waals forces create attraction but don't form strong bonds between unlike layers.

In a study led by the Department of Energy's Oak Ridge National Laboratory, scientists synthesized a stack of atomically thin monolayers of two lattice-mismatched semiconductors. One, gallium selenide, is a "p-type" semiconductor, rich in charge carriers called "holes." The other, molybdenum diselenide, is an "n-type" semiconductor, rich in electron charge carriers.

Where the two semiconductor layers met, they formed an atomically sharp heterostructure called a p-n junction, which generated a photovoltaic response by separating electron-hole pairs that were generated by light. The achievement of creating this atomically thin solar cell, published in Science Advances, shows the promise of synthesizing mismatched layers to enable new families of functional two-dimensional (2D) materials.

The idea of stacking different materials on top of each other isn't new by itself. In fact, it is the basis for most electronic devices in use today. But such stacking usually only works when the individual materials have crystal lattices that are very similar, i.e., they have a good "lattice match."

This is where this research breaks new ground by growing high-quality layers of very different 2D materials, broadening the number of materials that can be combined and thus creating a wider range of potential atomically thin electronic devices.

"Because the two layers had such a large lattice mismatch between them, it's very unexpected that they would grow on each other in an orderly way," said ORNL's Xufan Li, lead author of the study. "But it worked."

The group was the first to show that monolayers of two different types of metal chalcogenides - binary compounds of sulfur, selenium or tellurium with a more electropositive element or radical - having such different lattice constants can be grown together to form a perfectly aligned stacking bilayer. "It's a new, potential building block for energy-efficient optoelectronics," Li said.

Upon characterizing their new bilayer building block, the researchers found that the two mismatched layers had self-assembled into a repeating long-range atomic order that could be directly visualized by the Moire patterns they showed in the electron microscope. "We were surprised that these patterns aligned perfectly," Li said.

Researchers in ORNL's Functional Hybrid Nanomaterials group, led by David Geohegan, conducted the study with partners at Vanderbilt University, the University of Utah and Beijing Computational Science Research Center.

"These new 2D mismatched layered heterostructures open the door to novel building blocks for optoelectronic applications," said senior author Kai Xiao of ORNL.

"They can allow us to study new physics properties which cannot be discovered with other 2D heterostructures with matched lattices. They offer potential for a wide range of physical phenomena ranging from interfacial magnetism, superconductivity and Hofstadter's butterfly effect."

Li first grew a monolayer of molybdenum diselenide, and then grew a layer of gallium selenide on top. This technique, called "van der Waals epitaxy," is named for the weak attractive forces that hold dissimilar layers together.

"With van der Waals epitaxy, despite big lattice mismatches, you can still grow another layer on the first," Li said. Using scanning transmission electron microscopy, the team characterized the atomic structure of the materials and revealed the formation of Moire patterns.

The scientists plan to conduct future studies to explore how the material aligns during the growth process and how material composition influences properties beyond the photovoltaic response. The research advances efforts to incorporate 2D materials into devices.

For many years, layering different compounds with similar lattice cell sizes has been widely studied. Different elements have been incorporated into the compounds to produce a wide range of physical properties related to superconductivity, magnetism and thermoelectrics. But layering 2D compounds having dissimilar lattice cell sizes is virtually unexplored territory.

"We've opened the door to exploring all types of mismatched heterostructures," Li said.

The title of the paper is "Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Russian scientists develop long-range secure quantum comms system
Saint Petersburg, Russia (SPX) Apr 18, 2016
A group of scientists from ITMO University in Saint Petersburg, Russia has developed a novel approach to the construction of quantum communication systems for secure data exchange. The experimental device based on the results of the research is capable of transmitting single-photon quantum signals across distances of 250 kilometers or more, which is on par with other cutting edge analogues. The ... read more


CHIP TECH
Students observe damaged Hitomi X-ray satellite and debris

NASA studies 3D printing for building densely populated electronics

Electrons slide through the hourglass on surface of bizarre material

Indian space scientists produce world's lightest synthetic material

CHIP TECH
Haigh-Farr showcases Antenna Solutions at DATT Summit

U.S. Army orders radios for Mid-East, African countries

Harris supplies tactical radios to African country

In-orbit delivery of Laos' 1st satellite launched

CHIP TECH
Sentinel-1B in position for liftoff

Soyuz meets its multi-satellite payload for Friday's Arianespace launch

Europe to launch satellites for Earth, Einstein

Arianespace cooperation with Russia remains smooth amid sanctions

CHIP TECH
GPS technology keeps eagle eye on elusive powerful owls

Satellite touchdown in run up to Galileo launch

Russian Glonass Satellite Scheduled for Launch on May 21

Glonass navigation system's ground infrastructure successfully completed

CHIP TECH
Heavy-lift helicopters test external load capabilities

Russian stealth bomber to carry hypersonic missiles

Delayed take-off for China's own regional jet

Experts examine new debris for MH370 clues

CHIP TECH
Russian scientists develop long-range secure quantum comms system

Intel to slash up to 12,000 jobs in restructuring

Canada PM lights up Internet explaining quantum computing

Ames physicists discover new material that may speed computing

CHIP TECH
Penn to study intense awe astronauts feel viewing Earth from space

Sentinel-1B will complete European Radar Vision initiative

Sentinel-1 sees rice paddy drop in the Mekong Delta

DigitalGlobe delivers first phase of continent-scale mapping initiative for PSMA Australia

CHIP TECH
China probes polluted school as parents urge action

Expect more unhealthy ozone days in the next decades: study

Pollutants in fish inhibit human's natural defense system

China air pollution shifts west in first quarter: Greenpeace









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.