Space Industry and Business News  
TIME AND SPACE
OLYMPUS experiment sheds light on structure of protons
by Staff Writers
Boston MA (SPX) Mar 07, 2017


A mystery concerning the structure of protons is a step closer to being solved, thanks to a seven-year experiment led by researchers at MIT. Image courtesy Christine Daniloff/MIT

A mystery concerning the structure of protons is a step closer to being solved, thanks to a seven-year experiment led by researchers at MIT. For many years researchers have probed the structure of protons - subatomic particles with a positive charge - by bombarding them with electrons and examining the intensity of the scattered electrons at different angles.

In this way they have attempted to determine how the proton's electric charge and magnetization are distributed. These experiments had previously led researchers to assume that the electric and magnetic charge distributions are the same, and that one photon - an elementary particle of light - is exchanged when the protons interact with the bombarding electrons.

However, in the early 2000s, researchers began to carry out experiments using polarized electron beams, which measure electron-proton elastic scattering using the spin of the protons and electrons. These experiments revealed that the ratio of electric to magnetic charge distributions decreased dramatically with higher-energy interactions between the electrons and protons.

This led to the theory that not one but two photons were sometimes being exchanged during the interaction, causing the uneven charge distribution. What's more, the theory predicted that both of these particles would be so-called "hard," or high-energy photons.

In a bid to identify this "two-photon exchange," an international team led by researchers in the Laboratory for Nuclear Science at MIT carried out a seven-year experiment, known as OLYMPUS, at the German Electron Synchrotron (DESY) in Hamburg.

In a paper published this week in the journal Physical Review Letters, the researchers reveal the results of this experiment, which indicate that two photons are indeed exchanged during electron-proton interactions.

However, unlike the theoretical predictions, analysis of the OLYMPUS measurements suggests that, most of the time, only one of the photons has high energy, while the other must carry very little energy indeed, according to Richard Milner, a professor of physics and member of the Laboratory for Nuclear Science's Hadronic Physics Group, who led the experiment.

"We saw little if no evidence for a hard two-photon exchange," Milner says.

Having proposed the idea for the experiment in the late 2000s, the group was awarded funding in 2010.

The researchers had to disassemble the former BLAST spectrometer - a complex 125-cubic-meter-sized detector based at MIT - and transport it to Germany, where it was reassembled with some improvements. They then carried out the experiment over three months in 2012, before the particle accelerator at the laboratory was itself decommissioned and shut down at the end of that year.

The experiment, which was carried out at the same time as two others in the U.S. and Russia, involved bombarding the protons with both negatively charged electrons and positively charged positrons, and comparing the difference between the two interactions, according to Douglas Hasell, a principal research scientist in the Laboratory for Nuclear Science and the Hadronic Physics Group at MIT, and another of the paper's authors.

The process will produce a subtly different measurement depending on whether the protons are scattered by electrons or positrons, Hasell says. "If you see a difference (in the measurements), it would indicate that there is a two-photon effect that is significant."

The collisions were run for three months, and the resulting data took a further three years to analyze, Hasell says.

The difference between the theoretical and experimental results means further experiments may need to be carried out in the future, at even higher energies where the two-photon exchange effect is expected to be larger, Hasell says.

It may prove difficult to achieve the same level of precision reached in the OLYMPUS experiment, however.

"We ran the experiment for three months and produced very precise measurements," he says. "You would have to run for years to get the same level of precision, unless the performance (of the experiment) could be improved."

In the immediate future, the researchers plan to see how the theoretical physics community responds to the data, before deciding on their next step, Hasell says.

"It may be that they can make a small adjustment to a detail within their theoretical models to bring it all into agreement, and explain the data at both higher and lower energies," he says.

"Then it will be up to the experimentalists to check if that holds to be the case."

Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

TIME AND SPACE
Quantum entanglement between a single photon and a trillion of atoms
Warsaw, Poland (SPX) Mar 03, 2017
New light is shed on the famous paradox of Einstein, Podolsky and Rosen after 80 years. A group of researchers from the Faculty of Physics at the University of Warsaw has created a multidimensional entangled state of a single photon and a trillion of hot rubidium atoms. This hybrid entanglement has been stored in the laboratory for several microseconds. The research has been published in the pre ... read more

Related Links
Massachusetts Institute of Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Aireon and Thales Begin Validation of Space-Based ADS-B Data

Space surveillance radar system fully operational

Coffee-ring effect leads to crystallization control

3-D printing with plants

TIME AND SPACE
Rockwell Collins, Australian air force test WBHF communication system

Space aggressors jam AF, allies' systems

General Dynamics gets enterprise communications contract

Harris intros new wideband manpack radio system

TIME AND SPACE
TIME AND SPACE
Police in China's restive Xinjiang to track cars by GPS

GLONASS station in India to expedite 'space centric' warfare command

Australia and Lockheed field 2nd-Gen sat-based augmentation system

UK may lose access to EU Galileo GPS system after Brexit

TIME AND SPACE
U.S. Air Force F-16s to receive weapon systems update

Boeing to provide additional support for Saudi F-15s

Rheinmetall making ammunition for U.S. Air Force F-35s

Boeing to provide C-17 training for UAE

TIME AND SPACE
Super-fast computer made from DNA 'grows as it computes'

Chinese tech giant eyes global market with custom chip

Artificial synapse for neural networks

Combining the ultra-fast with the ultra-small

TIME AND SPACE
TRIPLESAT Constellation Tasking with SpyMeSat Mobile App

'Angry' Australian summer weather smashes records

Study shows US grasslands affected more by atmospheric dryness than precipitation

Second 'colour vision' satellite for Copernicus launched

TIME AND SPACE
Environmental risks kill 1.7mn kids under 5 a year: WHO

City noise linked to hearing loss: study

Bangladesh orders shutdown of city tanneries

Pakistan's financial capital Karachi turned 'into rubbish bin'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.