Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
Numerical validation of quantum magnetic ordering
by Staff Writers
Heidelberg, Germany (SPX) Oct 24, 2013


File image.

A new study set out to use numerical simulations to validate previous theoretical predictions describing materials exhibiting so-called antiferromagneting characteristics. A recently discovered theory shows that the ordering temperature depends on two factors-namely the spin-wave velocity and the staggered magnetisation.

The results, largely consistent with these theoretical predictions, have now been published in a paper in EPJ B by Ming-Tso Kao and Fu-Jiun Jiang from the National Taiwan Normal University, in Taipei.

In antiferromagnetic materials, the spins of electrons align in a regular pattern pointing in opposite directions to their neighbours. The materials' magnetic ordering conditions the temperature, referred to as the Neel temperature, above which the macroscopic magnetic ordering is no longer present.

The authors attempted to confirm a new universal law established between the thermal and quantum properties of these three-dimensional quantum antiferromagnets. Specifically, the law suggests that the Neel temperature can be related to the staggered magnetisation density near a quantum critical point (QCP).

At that point, there is a special class of continuous magnetic phase transition taking place at the absolute zero of temperature, driven by quantum-level fluctuations.

In order to produce quantitative predictions, they simulated a specific three-dimensional relevant model using the first principles of approximation-free Monte Carlo calculations. The authors thus extracted the Neel temperature, the zero-temperature staggered magnetisation in the system and the spinwave velocity.

They found that the universal relation is valid to a great extent, while there is a discrepancy between the theoretical predictions and the simulation results. Further investigation, they believe, is required in order to better understand the discrepancy.

For example, this could mean investigating whether the predicted universal relation is valid qualitatively or quantitatively for the same type and different type of quantum phase transitions occurring in other models than that considered here.

M.-T. Kao, F.-J. Jiang (2013), Investigation of a universal behavior between Neel temperature and staggered magnetization density for a three-dimensional quantum antiferromagnet, European Physical Journal B, DOI 10.1140/epjb/e2013-40726-6

.


Related Links
Springer
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
A chameleon in the physics lab
Boston MA (SPX) Oct 24, 2013
Active camouflage has taken a step forward at the Harvard School of Engineering and Applied Sciences (SEAS), with a new coating that intrinsically conceals its own temperature to thermal cameras. In a laboratory test, a team of applied physicists placed the device on a hot plate and watched it through an infrared camera as the temperature rose. Initially, it behaved as expected, giving off ... read more


TIME AND SPACE
Zoomable Holograms Pave the Way for Versatile, Portable Projectors

Copper Shock: An Atomic-scale Stress Test

Study Finds Natural Compound Can Be Used for 3-D Printing of Medical Implants

NIST measures laser power with portable scale

TIME AND SPACE
Northrop Grumman Cobham Intercoms Receives First Order For AN VIC-5 Enhanced Vehicular Comms

Raytheon produces new US Army satellite communications terminals ahead of schedule

Lockheed Martin To Continue In Theater Support for Real-Time Surveillance

Lockheed Martin to Deliver Communications and Transmission Services to US Army

TIME AND SPACE
ILS Proton Launches Sirius FM-6 Satellite

Boeing Finalizes Agreement for Kennedy Space Center Facility

Russia Plans to Spend $22M on Soyuz-2 Launch Pad

Ariane 5 arrives at the Spaceport's Final Assembly Building for payload installation

TIME AND SPACE
Raytheon demonstrates first Direct Geo-Positioning Metric Sensor

Britain considering car-tracking 'bullet' technology

Orbcomm Launches Solar-Powered Trailer Tracking Solution

Software Uses Cyborg Swarm To Map Unknown Environs

TIME AND SPACE
Boeing, Lockheed team up for new US Air Force bomber

The Effects of Space Weather on Aviation

Space ballooning: 20-mile-high flights offered for $75K

Boeing Begins Assembling 3rd KC-46A Tanker Aircraft

TIME AND SPACE
JQI team 'gets the edge' on photon transport in silicon

Atomically Thin Device Promises New Class of Electronics

Tiny Sensors Put the Squeeze on Light

Quantum conductors benefit from growth on smooth foundations

TIME AND SPACE
Hi-tech aqueduct explorers map Rome's 'final frontier'

NASA satellites help track volcanic ash affecting air travel

New evidence on lightning strikes

How Earth's rotation affects vortices in nature

TIME AND SPACE
Pollution debated in Canada's oil fields

Mustard gas traces found close to Poland's Baltic Sea coast

Air Pollution Sources And Atmosphere-Warming Particles In South Asia

China to begin inspection plan for air pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement