Space Industry and Business News
TIME AND SPACE
Nuclear spin's impact on biological processes uncovered
Rapid passage of magnetic water molecules into cells
Nuclear spin's impact on biological processes uncovered
by Staff Writers
Jerusalem (SPX) Aug 01, 2023

A research team led by Prof. Yossi Paltiel at the Hebrew University of Jerusalem with groups from HUJI, Weizmann and IST Austria new study reveals the influence of nuclear spin on biological processes. This discovery challenges long-held assumptions and opens up exciting possibilities for advancements in biotechnology and quantum biology.

Scientists have long believed that nuclear spin had no impact on biological processes. However, recent research has shown that certain isotopes behave differently due to their nuclear spin. The team focused on stable oxygen isotopes (16O, 17O, 18O) and found that nuclear spin significantly affects oxygen dynamics in chiral environments, particularly in its transport.

The findings, published in the prestigious Proceedings of the National Academy of Sciences (PNAS), have potential implications for controlled isotope separation and could revolutionize nuclear magnetic resonance (NMR) technology.

Prof. Yossi Paltiel, the lead researcher, expressed excitement about the significance of these findings. He stated, "Our research demonstrates that nuclear spin plays a crucial role in biological processes, suggesting that its manipulation could lead to groundbreaking applications in biotechnology and quantum biology. This could potentially revolutionize isotopic fractionation processes and unlock new possibilities in fields such as NMR."

The story in detail
Researchers have been studying the "strange" behavior of tiny particles in living things, funding some places where quantum effects change biological processes. For example studying bird navigation quantum effects may help some birds find their way in long journeys. In plants efficiently using sunlight for energy is affected by quantum effects.

This connection between the tiny world of particles and living beings likely goes back billions of years when life began and molecules with a special shape called chirality appeared. Chirality is important because only molecules with the right shape can do the jobs they need to in living things.

The link between chirality quantum mechanics was found in "spin," which is like a tiny magnetic property. Chiral molecules can interact differently with particles based on their spin, creating something called Chiral Induced Spin Selectivity (CISS).

Scientists have found that spin affects tiny particles, like electrons, in living processes involving chiral molecules. They wanted to see if spin also affects larger particles, like ions and molecules which supply the base for biological transport. So, they did experiments with water particles that have different spins. The results showed that spin influences how water behaves in cells, entering at different speeds and reacting in a unique way when chiral molecules are involved.

This study highlights the importance of spin in the processes of life. Understanding and controlling spin could have a big impact on how living things work. It might also help improve medical imaging and create new ways to treat illnesses.

The research was a collaborative effort among scientists from various institutions, including the Institute of Earth Sciences and Life Sciences in Hebrew and the Weizmann Institute, with the study led by the Department of Applied Physics at Hebrew University.

Research Report:Nuclear spin effects in biological processes

Related Links
The Hebrew University of Jerusalem
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Precision Laser Spectroscopy and the Quantum Motion of Atomic Nuclei
Duesseldorf, Germany (SPX) Jul 31, 2023
Physicists led by Professor Stephan Schiller, Ph.D., from Heinrich Heine University Dusseldorf (HHU) have taken us one step closer to understanding the subtleties of atomic behavior by employing ultra-high-precision laser spectroscopy on a simple molecule. Their breakthrough research, published in the scientific journal Nature Physics, sheds light on the wave-like vibrations of atomic nuclei and asserts the precision of established forces between atomic nuclei. For almost a century, simple atoms h ... read more

TIME AND SPACE
Deep Space communications to get a laser boost

Solestial's Tech to Power Atomos's OTVs

Recycling parts for life on the Moon

UTokyo unfolds the 'Future Window' dream

TIME AND SPACE
Lockheed Martin completes CDR for Tranche 1 Transport Layer Satellites

Northrop Grumman achieves key milestone in Arctic Satellite Broadband Mission

Hisdesat announces the launch of first SpainSat NG satellite for summer of 2024

ATLAS Space launches Freedom Space for Government Missions

TIME AND SPACE
TIME AND SPACE
New Galileo station goes on duty

Potential earthquake precursor discovered through GPS measurements

Northrop Grumman's new airborne navigation system achieves successful flight test

Fugro and GomSpace deliver world class position and timing accuracy onboard LEO satellites

TIME AND SPACE
NASA's ComPair Balloon mission readies for flight

Cathay Pacific rebounds to first-half profit as travel picks up

DLR conducts first flight of HyBird demonstrator

Poland reinforces eastern border after airspace violation

TIME AND SPACE
BMW, Airbus and Quantinuum to fast-track mobility research using quantum computers

Biden announces curbs on US investments in China

Faster thin film devices for energy storage and electronics

Why Europe is hungry for chips

TIME AND SPACE
BlackSky signs Rocket Lab for five launches

Ionospheric study reveals surprising protection by Earth's magnetic field

IBM collaborates with NASA to launch Geospatial AI on Hugging Face

Southern Cross and Satelytics Announce Market Development Partnership

TIME AND SPACE
Tunisian brand turns sea plastic into green couture

Inner city delivery hubs raise child health fears after UK court battle

Discarded plastic blights Honduran mangrove island

Indonesia capital becomes world's most polluted major city: monitor

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.