Space Industry and Business News  
STELLAR CHEMISTRY
Northwestern rocket to image supernova remnant
by Amanda Morris for NW News
Evanston IL (SPX) Aug 12, 2022

File image of Cassiopeia A. Video: Northwestern's 'Micro-X' rocket to image supernova remnant

A Northwestern University astrophysics team is aiming for the stars - well, a dead star, that is.

On Aug. 21, the NASA-funded team will launch its "Micro-X" rocket from White Sands Missile Range in southern New Mexico. The rocket will spend 15 minutes in space - just enough time to snap a quick image of supernova remnant Cassiopeia A, a star in the Cassiopeia constellation that exploded approximately 11,000 light-years away from Earth. Then, the rocket will parachute back to Earth, landing in the desert - about 45 miles from the launchpad - where the Northwestern team will recover its payload.

Short for "high-resolution microcalorimeter X-ray imaging rocket," the Micro-X rocket will carry a superconductor-based X-ray imaging spectrometer that is capable of measuring the energy of each incoming X-ray from astronomical sources with unprecedented accuracy.

"The supernova remnant is so hot that most of the light it emits is not in the visible range," said Northwestern's Enectali Figueroa-Feliciano, who leads the project. "We have to use X-ray imaging, which isn't possible from Earth because our atmosphere absorbs X-rays. That's why we have to go into space. It's like if you jumped into the air, snapped a photo just as your head peeked above the atmosphere and then landed back down."

Figueroa-Feliciano is a professor of physics and astronomy in the Weinberg College of Arts and Sciences and a member of Northwestern's Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). He advised a team of seven graduate students, postdoctoral fellows and post-baccalaureate researchers, who spent the past decade building and testing the rocket.

Although Micro-X will launch from New Mexico, the team built the rocket and its payload in Figueroa-Feliciano's laboratory on the Evanston campus. The trickiest part is keeping the super-conducting detectors at extremely cold temperatures - just a tiny fraction of a degree above absolute zero - even as it heats up while breaking through the atmosphere. The team solved that issue with a thermos filled with liquid helium, which is decoupled from the heat and vibrations on the rocket skin during flight.

"Constructing the Micro-X rocket is a challenging endeavor," Figueroa-Feliciano said. "Once it launches, it needs to be a completely hands-off process. It has to turn on, record data, store data and send data back to us autonomously. It gives the students an opportunity to learn how to build and test real technology."

Now in New Mexico, the team is assembling the rocket and readying it for flight. People can follow the team's journey on Instagram.

The team previously tested the six-story-tall rocket at NASA's Wallops Flight Facility in Virginia and launched it for the first time in summer 2018. During the rocket's first flight, the researchers demonstrated its detectors, along with their superconducting electronics readout, worked in space.

By studying the supernova remnant, which is 10 light-years across, Figueroa-Feliciano hopes to learn more about life on Earth - and inside our bodies.

"We're all made of star stuff," he said. "The elements in our bodies are made in the cores of stars. When stars explode, they shoot ejecta into space. Cassiopeia A is so big that the sun and the 14 closest stars to the sun would all fit inside the supernova remnant. The ejecta from these events spreads through the galaxy and ultimately ends up making planets like Earth."

Collaborating institutions include NASA's Goddard Space Flight Center, Lawrence Livermore National Laboratory, National Institute of Standards and Technology and University of Wisconsin at Madison.


Related Links
Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA)
Northwestern University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Stars determine their own masses
Evanston IL (SPX) Aug 09, 2022
Last year, a team of astrophysicists including key members from Northwestern University launched STARFORGE, a project that produces the most realistic, highest-resolution 3D simulations of star formation to date. Now, the scientists have used the highly detailed simulations to uncover what determines the masses of stars, a mystery that has captivated astrophysicists for decades. In a new study, the team discovered that star formation is a self-regulatory process. In other words, stars themselves s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Software-defined satellite enters commercial service

Matter at extreme temperature and pressure turns out to be remarkably simple and universal

Wobbling droplets in space confirm late professor's theory

Pitt is the only university in the U.S. with this giant 3D printer for metal

STELLAR CHEMISTRY
Compact QKD system paves the way to cost-effective satellite-based quantum networks

US Navy military sealift command awards Inmarsat 10-year wideband follow-on contract

Satellite operators Eutelsat, OneWeb agree to merge

SKYNET 6A satellite passes Critical Design Review

STELLAR CHEMISTRY
STELLAR CHEMISTRY
MariaDB reimagines how databases deliver geospatial capabilities with acquisition

Space Systems Command awards GPS support contract to Lockheed Martin

Safran acquires Orolia and plans to become the world leader in resilient PNT

The face of Galileo

STELLAR CHEMISTRY
Taiwan shows off most advanced fighter jet after China drills

Swiss head towards popular vote on US fighter jets purchase

German fighter jets to make debut in Indo-Pacific

Philippines cancels Russia helicopter deal over US sanctions

STELLAR CHEMISTRY
Biden signs major semiconductors investment bill to compete against China

Faster computation for artificial intelligence, with much less energy

Molecular electronics: a possible solution beyond Moore's Law

New method of controlling qubits could advance quantum computers

STELLAR CHEMISTRY
The Lacuna Space water monitoring system

Launch Schedule for 3rd StriX-1 SAR satellite

Landsat 9 operations to transition from NASA to US Geological Survey

Fleet Space' Exosphere Earth Scanning Technology tested at lithium exploration site

STELLAR CHEMISTRY
Polish firemen pull tonnes of dead fish from Oder river

Thai authorities to charge park official in activist's murder

'Dead fish everywhere' in German-Polish river after feared chemical waste dump

Biden signs bill aiding veterans exposed to toxins









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.