Space Industry and Business News  
Northrop Grumman Proves BAMS Mission Control System Design

The capabilities of the proposed BAMS system posed a challenge in creating a realistic simulation environment. The Global Hawk's speed and field of view from its operational altitude enables it to cover more than 170,000 square nautical miles each hour. The unmatched system payload capability, without trade-off of fuel load, provides robust multi-sensor operations requiring a high degree of simulation fidelity to allow for operational evaluation and refinement.
by Staff Writers
Washington DC (SPX) Jul 17, 2007
Northrop Grumman is conducting a range of system simulations in a prototype Broad Area Maritime Surveillance (BAMS) Mission Control System (MCS) to validate operational models while generating performance measures and manning effectiveness. The Northrop Grumman BAMS Head Start team has integrated the MCS into a mock-up of a Tactical System Center (TSC) used by the Maritime Patrol and Reconnaissance Forces (MPRF), allowing for full system effectiveness modeling of the Northrop Grumman BAMS solution concept within a realistic U.S. Navy environment.

Northrop Grumman's Cyber Warfare Information Network (CWIN) is being used to tie the prototype MCS to a Global Hawk system simulator in Rancho Bernardo, Calif. and the Concept Exploitation Lab for Maritime Patrol and Reconnaissance C4I in Hollywood, Md. The system simulations allow complete leverage of the pre-existing modeling and simulation of the RQ-4B Global Hawk system as modified for BAMS.

"The tests being conducted are validating the proposed MCS design within a representative TSC," said Carl Johnson, Northrop Grumman BAMS program vice president, "demonstrating the tactical capability with objective manning levels. We have found that the high degree of air vehicle autonomy found in the RQ-4N and our operator decision support tools allow for fewer operator actions to complete an assigned mission, thereby reducing manning requirements."

The manning experiments are exploring the workload and training requirements of BAMS MCS personnel. Tests conducted have validated the capability to operate the system with only two people, a mission commander/pilot and a sensor operator.

The company is quantifying the significant efficiency improvements for the two-person crew, augmented by existing MPRF watch-standers, through the prototype and simulations. The improvements are enabled by Northrop Grumman's next-generation MCS design that includes advances in ergonomics, graphical interfaces and operator support tools.

The capabilities of the proposed BAMS system posed a challenge in creating a realistic simulation environment. The Global Hawk's speed and field of view from its operational altitude enables it to cover more than 170,000 square nautical miles each hour. The unmatched system payload capability, without trade-off of fuel load, provides robust multi-sensor operations requiring a high degree of simulation fidelity to allow for operational evaluation and refinement.

"Our prototype MCS provides the opportunity to evaluate and refine operator decision support tools while integrated into a representative MPRF TSC facility," said Dennis Wojcik, leader of the MCS integrated product team. "The MCS leverages advances in commercial networking and service oriented architectures."

The TSC development lab is the result of Northrop Grumman's 15 years of experience developing, integrating and providing support for the MPRF community. Both the prototype and the production MCS design will be run on commercial off-the-shelf (COTS) computers with non-proprietary commercial/government applications to take full advantage of an Internet Protocol (IP)-based architecture.

"The CWIN simulation environment allows us to rapidly insert new capabilities and evaluate operator actions and tactical utility over areas measured in hundreds of thousands of square nautical miles with representative track densities," said Wojcik. "It has given us opportunities to review and refine the system design and operator applications in advance of the System Design and Development program and has helped us to accurately characterize system performance and significantly reduce schedule risk."

The Northrop Grumman RQ-4N BAMS team includes Northrop Grumman as prime contractor and team leader, unmanned aerial vehicle supplier and developer of the Multi-Function Active Sensor active electronically scanned array radar and Night Hunter II electro-optical infrared sensor; L-3 Communications providing communications integration; Raytheon supporting the MCS segment; and Rolls-Royce providing the aircraft engine.

BAMS will supply the U.S. Navy with a persistent global intelligence, surveillance and reconnaissance system to protect the fleet and provide a capability to detect, track, classify, and identify maritime, littoral and land targets.

Related Links
Northrop Grumman
UAV News - Suppliers and Technology



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


US To Boost Use Of Armed Drones In Iraq And Afghanistan
Washington (AFP) July 13, 2007
The US air force announced plans Friday to nearly double the number of combat air patrols over Iraq and Afghanistan by the end of next year using armed Predator drones. The move comes amid a troop surge in Iraq but also intensifying calls for a withdrawal of US combat forces. An air force spokesman would not say whether the accelerated delivery of Predators was prompted by the surge, or other factors.







  • Vizada Launches SkyFile Access For Better Mobile Satellite Data Transfer
  • Bringing Mobile Cellular Phones To The Skyways
  • Rockwell Collins And ARINC Sign Agreement For Broadband Offering
  • Academic Group Releases Plan To Share Power Over Internet Root Zone Keys

  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Sea Launch To Resume Zenit Launches In October
  • Russia Proton-M Booster Puts US Satellite Into Orbit

  • Goodrich Contributes Technology For Environmentally-Friendly Engine Research Program
  • Sukhoi Super Jet: The Great White Hope Of The Russian Aircraft Industry
  • Sarkozy, Merkel To Tackle Airbus Problems
  • Boeing Awarded Two Billion Dollar A-10 Wing Contract

  • A-10s Get Digital Makeover
  • TSAT Team Demonstrates Technology Maturity Of Laser Communications Subsystem
  • Boeing Showcases Operational TSAT System During Critical Review
  • Lockheed Martin Shifts Into Production Phase Of Navy Narrowband Tactical Satellite

  • Ball Aerospace Deep Impact Spacecraft Chosen For NASA EPOXI Mission
  • DuPont And NASA To Develop Kevlar Reinforced Insulation For Next Gen Space Vehicles
  • NASA Harnesses Power Of Virtual Worlds For Exploration And Outreach
  • Stardust And Deep Impact Get New Assignments Cruising About Sol

  • Hall Appoints Feeney To Top GOP Position On Space And Aeronautics Subcommittee
  • Dodgen Joins Northrop Grumman As Vice President Of Strategy For Missile Systems Business
  • Townsend To Lead Ball Aerospace Exploration Systems In Huntsville
  • NASA Nobel Prize Recipient To Lead Chief Scientist Office

  • NASA Awards Contract For Land-Imaging Instrument
  • GOP House Science Committee To Evaluate NASA Earth Science Budget
  • Subcommittee Continues Look At Status of NASA Earth Science Programs
  • QuikSCAT Marks Eight Years On-Orbit Watching Planet Earth

  • Pseudo-Satellites Allow Accurate Navigation In Helsinki Harbour
  • Cooperation Agreement For Satellite Navigation In Africa
  • ESA Launches New Program For Air Traffic Management Via Satellite
  • GPS Wing At LA Air Force Base Changes Command

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement