Space Industry and Business News  
TIME AND SPACE
Next step in simulating the universe
by Staff Writers
Tsukuba, Japan (SPX) Dec 03, 2020

File image of Japan's Super Kamiokande neutrino detector.

Computer simulations have struggled to capture the impact of elusive particles called neutrinos on the formation and growth of the large-scale structure of the Universe. But now, a research team from Japan has developed a method that overcomes this hurdle.

In a study published this month in The Astrophysical Journal, researchers led by the University of Tsukuba present simulations that accurately depict the role of neutrinos in the evolution of the Universe.

Why are these simulations important? One key reason is that they can set constraints on a currently unknown quantity: the neutrino mass. If this quantity is set to a particular value in the simulations and the simulation results differ from observations, that value can be ruled out.

However, the constraints can be trusted only if the simulations are accurate, which was not guaranteed in previous work. The team behind this latest research aimed to address this limitation.

"Earlier simulations used certain approximations that might not be valid," says lead author of the study Lecturer Kohji Yoshikawa. "In our work, we avoided these approximations by employing a technique that accurately represents the velocity distribution function of the neutrinos and follows its time evolution."

To do this, the research team directly solved a system of equations known as the Vlasov-Poisson equations, which describe how particles move in the Universe. They then carried out simulations for different values of the neutrino mass and systemically examined the effects of neutrinos on the large-scale structure of the Universe.

The simulation results demonstrate, for example, that neutrinos suppress the clustering of dark matter--the 'missing' mass in the Universe--and in turn galaxies. They also show that neutrino-rich regions are strongly correlated with massive galaxy clusters and that the effective temperature of the neutrinos varies substantially depending on the neutrino mass.

"Overall, our findings suggest that neutrinos considerably affect the large-scale structure formation, and that our simulations provide an accurate account for the important effect of neutrinos," explains Lecturer Yoshikawa. "It is also reassuring that our new results are consistent with those from entirely different simulation approaches."

Research Report: "Cosmological Vlasov-Poisson Simulations of Structure Formation with Relic Neutrinos: Nonlinear Clustering and the Neutrino Mass"


Related Links
University Of Tsukuba
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
A hint of new physics in polarized radiation from the early Universe
Tokyo, Japan (SPX) Nov 26, 2020
Using Planck data from the cosmic microwave background radiation, an international team of researchers has observed a hint of new physics. The team developed a new method to measure the polarization angle of the ancient light by calibrating it with dust emission from our own Milky Way. While the signal is not detected with enough precision to draw definite conclusions, it may suggest that dark matter or dark energy causes a violation of the so-called "parity symmetry." The laws of physics governin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Move over plastic: desktop 3D printing in metal or ceramics

Russian scientists improve 3D printing technology for aerospace composites using oil waste

Using fabric to "listen" to space dust

Stanford engineers combine light and sound to see underwater

TIME AND SPACE
Elbit Systems launches E-LynX-Sat - a portable tactical SATCOM system

NXTCOMM Defense Division formed to support military communications imperative

Launch of next 3 Russian Gonets-M satellites scheduled on Nov 24

US Military, Industry Discuss Improving High-Tech Battlefield Communication

TIME AND SPACE
TIME AND SPACE
BeiDou navigation base in south China targets services in ASEAN

GMV wins major contracts for Galileo Second Generation ground segment

BDS-3 gains major breakthrough in civil aviation sector

Swift Navigation's improves accuracy of single-frequency GNSS receivers

TIME AND SPACE
B-1B Lancer bomber can carry hypersonic weapon externally, test shows

NASA Centers Collaborate to Advance Quiet Supersonic Technology During Pandemic

Research initiative pioneers sustainable flight

Fantasy to Reality: NASA Pushes Electric Flight Envelope

TIME AND SPACE
World's smallest atom-memory unit created

Lower current leads to highly efficient memory

Magnetic vortices come full circle

Spintronics advances controlling magnetization direction of magnetite at room temperature

TIME AND SPACE
Rocket Lab to launch dedicated mission for Japanese earth imaging company Synspective

Satellite imagery used for electricity consumption forecasting in Africa for the first time in new service

Teledyne e2v part of UK Collaboration to Develop Quantum Technologies to Measure Atmosphere

ESAIL's first map of global shipping

TIME AND SPACE
China to end all waste imports on Jan 1

Paris 'magnet fishers' snag 51 bikes in canal haul

Inquest to probe role of air pollution in death of British girl

Thailand brings NASA air quality data down to Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.