Subscribe free to our newsletters via your
. Space Industry and Business News .




NANO TECH
New wave of technologies possible after ground-breaking analysis tool developed
by Staff Writers
Sheffield, UK (SPX) Aug 29, 2012


1D-NMR uses powerful 900 MHz superconducting magnets.

A revolutionary tool created by scientists at the University of Sheffield has enabled researchers to analyse nanometer-sized devices without destroying them for the first time, opening the door to a new wave of technologies. The nuclear magnetic resonance apparatus - developed by the University's Department of Physics and Astronomy - will allow for further developments and new applications for nanotechnology which is increasingly used in harvesting solar energy, computing, communication developments and also in the medical field.

Scientists can now analyse nanostructures at an unprecedented level of detail without destroying the materials in the process, a limitation researchers across the world faced before the Sheffield experts' breakthrough.

Dr Alexander Tartakovskii, who led a team of researchers, said: "We have developed a new important tool for microscopy analysis of nanostructures. The very tiny quantities of matter used in nanostructures - the behavior of electrons and photons - is governed by new quantum effects, quite different from what happens in bulk materials.

"Development requires careful structural analysis, in order to understand how the nanostructures are formed, and how we can build them to enhance and control their useful properties.

Existing structural analysis methods, key for the research and development of new materials, are invasive: a nanostructure would be irreversibly destroyed in the process of the experiment, and, as a result, the important link between the structural and electronic or photonic properties would usually be lost. This limitation is now overcome by our new techniques, which rely on inherently non-invasive nuclear magnetic resonance (NMR) probing."

The results open a new way of nano-engineering, a full characterisation of a new material and new semiconductor nano-device without destroying them meaning more research and development and device fabrication processes.

Dr Tarakovskii added: "We have developed new techniques which allowed unprecedented sensitivity and enhancement of the NMR signal in nanostructures. Particular nanostructures of interest in our research are semiconductor quantum dots, which are researched widely for their promising photonic applications, and potential for the use in a new type of computer hardware employing quantum logic.

"The result of our experiments was quite unexpected and changed our understanding of the architecture of these nanomaterials: we learned new information about the chemical composition of quantum dots, and also how atom alignment inside the dots deviates from that of a perfect crystal. Importantly, many more measurements of optical and magnetic properties can be done on the same quantum dots which have undergone the NMR probing."

The development of the new techniques and all experimental work was carried out by Dr Evgeny Chekhovich in the group of Dr Alexander Tartakovskii at the Department of Physics and Astronomy in Sheffield. Quantum dot samples used in this work have also been fabricated in Sheffield, in the EPSRC National Facility for III-V Semiconductor Technology.

The paper, titled "Structural analysis of strained quantum dots using nuclear magnetic resonance", is published in the journal Nature Nanotechnology.

.


Related Links
University of Sheffield
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Researchers develop method to grow artificial tissues with embedded nanoscale sensors
Boston MA (SPX) Aug 29, 2012
A multi-institutional research team has developed a method for embedding networks of biocompatible nanoscale wires within engineered tissues. These networks-which mark the first time that electronics and tissue have been truly merged in 3D-allow direct tissue sensing and potentially stimulation, a potential boon for development of engineered tissues that incorporate capabilities for monitoring a ... read more


NANO TECH
Modern lives in US are multi-screen: Google

Weighing molecules one at a time

Brazil bids to become world's third IT market by 2022

The Laser Beam as a "3D Painter"

NANO TECH
Lockheed Martin Wins Role on Defense Information Systems Agency Program

Raytheon unveils cross domain strategy to securely access information via mobile devices

NATO Special Forces Taps Mutualink for Global Cross Coalition Communications

Northrop Grumman Demonstrates Integrated Receiver Circuit Under DARPA Program

NANO TECH
NASA Administrator Announces New Commercial Crew And Cargo Milestones

Ariane 5s are on the move for Arianespace's upcoming missions

Readying the "boost" for Galileo satellites on Arianespace's next Soyuz mission at the Space

ASTRA 2F touches down in French Guiana for Arianespace's next Ariane 5 dual-passenger mission

NANO TECH
Robbers nabbed thanks to GPS phone in loot

Fourth Galileo satellite reaches French Guiana launch site

A GPS in Your DNA

Next Galileo satellite reaches French Guiana launch site

NANO TECH
Threat forces Air China flight back to Beijing

Boeing Celebrates Delivery of First Aeroloft Installed on a BBJ 747-8

China flag carrier reports 77% slump in profit

Swiss fighter jet purchase details agreed despite criticism

NANO TECH
Electronic Nose Prototype Developed

Merging the biological and the electronic

Addressing the need for microscopic speed

Samsung to invest 779 mn euros in Dutch chipmaker ASML

NANO TECH
Landsat Data Continuity Mission Environmental Testing is Underway

Expert Analysis of Energy Infrastructure Using HiRes Satellite Imagery

Vecmap tracks the Asian bush mosquito

NASA Selects Combined Data Services Contract For Polar Satellites

NANO TECH
Wind concentrates pollutants with unexpected order in an urban environment

China wrestles with acid rain threat

Earthworms soak up heavy metal

Italians protest against pollution from steelworks




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement