Subscribe free to our newsletters via your
. Space Industry and Business News .




OIL AND GAS
New tracers can identify frack fluids in the environment
by Staff Writers
Durham NC (SPX) Oct 21, 2014


Drillers inject large volumes of the fluids down gas wells at high pressure to crack open shale formations deep underground and allow natural gas trapped within the shale to flow out and be extracted. After the shale has been fractured, the frac fluids flow back up the well to the surface along with the gas and highly saline brines from the shale formation.

Scientists have developed new geochemical tracers that can identify hydraulic fracturing flowback fluids that have been spilled or released into the environment. The tracers, which were created by a team of U.S. and French researchers, have been field-tested at a spill site in West Virginia and downstream from an oil and gas brine wastewater treatment plant in Pennsylvania.

"This gives us new forensic tools to detect if 'frac fluids' are escaping into our water supply and what risks, if any, they might pose," said Duke University geochemist Avner Vengosh, who co-led the research.

"By characterizing the isotopic and geochemical fingerprints of enriched boron and lithium in flowback water from hydraulic fracturing, we can now track the presence of frac fluids in the environment and distinguish them from wastewater coming from other sources, including conventional oil and gas wells," Vengosh said.

Using the tracers, scientists can determine where fracturing fluids have or haven't been released to the environment and, ultimately, help identify ways to improve how shale gas wastewater is treated and disposed of.

Vengosh and his colleagues published their peer-reviewed findings in the journal Environmental Science and Technology. Their study, which was funded in part by the National Science Foundation, is the first to report on the development of the boron and lithium tracers.

Nathaniel R. Warner, Obering Postdoctoral Fellow at Dartmouth College, was lead author of the study. "This new technology can be combined with other methods to identify specific instances of accidental releases to surface waters in areas of unconventional drilling," he said.

"It could benefit industry as well as federal and state agencies charged with monitoring water quality and protecting the environment."

Hydraulic fracturing fluids, or frac fluids, typically contain mixes of water, proprietary chemicals and sand. Mixtures can vary from site to site.

Drillers inject large volumes of the fluids down gas wells at high pressure to crack open shale formations deep underground and allow natural gas trapped within the shale to flow out and be extracted. After the shale has been fractured, the frac fluids flow back up the well to the surface along with the gas and highly saline brines from the shale formation.

Some people fear that toxic frac fluid chemicals in this flowback could contaminate nearby water supplies if flowback were accidentally spilled or insufficiently treated before being disposed of.

"The flowback fluid that returns to the surface becomes a waste that needs to be managed," Vengosh explained.

"Deep-well injection is the preferable disposal method, but injecting large volumes of wastewater into deep wells can cause earthquakes in sensitive areas and is not geologically available in some states. In Pennsylvania, much of the flowback is now recycled and reused, but a significant amount of it is still discharged into local streams or rivers."

Vengosh said it's possible to identify the presence of frac fluid in spilled or discharged flowback by tracing synthetic organic compounds that are added to the fluid before it's injected down a well. But the proprietary nature of these chemicals, combined with their instability in the environment, limits the usefulness of such tracers.

By contrast, the new boron and lithium tracers remain stable in the environment. "The difference is that we are using tracers based on elements that occur naturally in shale formations," Vengosh said.

When drillers inject frac fluids into a shale formation, they not only release hydrocarbon but also boron and lithium that are attached to clay minerals within the formation, he explained.

As the fluids react and mix at depth, they become enriched in boron and lithium. As they are brought back to the surface, they have distinctive isotopic fingerprints that are different from other types of wastewater, including wastewater from a conventional gas or oil well, as well as from naturally occurring background water.

"This type of forensic research allows us to clearly delineate between the possible sources of wastewater contamination," Vengosh said.

"New Tracers Identify Hydraulic Fracturing Fluids and Accidental Release from Oil and Gas Operations," N.R. Warner, T.H. Darrah, R.B. Jackson, R. Millot, W. Kloppmann, A. Vengosh. Environmental Science and Technology, Oct. 20, 2014. dx.doi.org/10.1021/es5032135


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Duke University
All About Oil and Gas News at OilGasDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








OIL AND GAS
Libyan operations give production boost to OMV
Vienna (UPI) Oct 20, 2014
Austrian energy company OMV said Monday its quarterly production was boosted by the resumption of operations in war-torn Libya. "Production levels in the third quarter of 2014 increased by 5 percent versus the second quarter as production in Libya partially resumed," the company said in its report. In its report for the second quarter, OMV said much of its Libyan assets were shut ... read more


OIL AND GAS
Engineers find a way to win in laser performance by losing

Unstoppable magnetoresistance

Sticky business: bonding ultrastable space missions

Tailored flexible illusion coatings hide objects from detection

OIL AND GAS
Development of software for electronic warfare resumes

GD's MUOS-Manpack PRC-155 Radio Connects USAF Aircraft to Ops Center

Northrop Grumman Debuts Low-Cost Terminals To Protect US Warfighters

'Space bubbles' may have aided enemy in fatal Afghan battle

OIL AND GAS
Argentina launches geostationary satellite

Arianespace's December mission for DIRECTV-14 and GSAT-16 satellites in process

Inquiry reveals design stage shortcoming in Galileo navigation system

Soyuz Flight VS09 Report

OIL AND GAS
Galileo duo handed over in excellent shape

With IRNSS-1C, India a Step Closer to Own Navigation Satellite System

ISRO to Launch India's Third Navigation Satellite on October 16

Russian Phone Operators Could Become GLONASS Shareholders

OIL AND GAS
Maintenance, upgrade work on Italian aircraft carrier ahead of schedule

Jordanian Air Force helicopter pilots to train on Robinson aircraft

C-17 false claims allegations settled by Boeing for $23 million

Bell Helicopter chooses GE Aviation for its V-80 Valor program

OIL AND GAS
Researchers develop world's thinnest electric generator

Australian teams set new records for silicon quantum computing

A novel platform for future spintronic technologies

Future computers could be built from magnetic 'tornadoes'

OIL AND GAS
NASA Tool Helps Airliners Minimize Weather Delays

Sophisticated Sensor Will Give NOAA Earlier Warnings of Severe Storms

Chinese scientist proposes new scientific satellites

NASA Begins Sixth Year of Airborne Antarctic Ice Change Study

OIL AND GAS
US hid troop exposure to chemical agents in Iraq: report

Days of heavy air pollution blight northern China

Nanoparticles Accumulate Quickly in Wetland Sediment

New study explains wintertime ozone pollution in Utah oil and gas fields




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.