Space Industry and Business News  
SOLAR DAILY
New technology makes foldable cells a practical reality
by Staff Writers
Busan, South Korea (SPX) Feb 12, 2021

Infographic Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor

With the recent development of foldable mobile phone screens, research on foldable electronics has never been so intensive. One particularly useful application of the foldable technology is in solar panels.

Current solar cells are restricted to rigid, flat panels, which are difficult to store in large numbers and integrate into everyday appliances, including phones, windows, vehicles, or indoor devices. But, one problem prevents this formidable technology from breaking through: to be integrated into these items, solar cells need to be foldable, to bend at will repeatedly without breaking. Traditional conducting materials used in solar cells lack flexibility, creating a huge obstacle in developing fully foldable cells.

A key requirement for an efficient foldable conductor is the ability to withstand the pressure of bending within a very small radius while maintaining its integrity and other desirable properties. In short, a thin, flexible, transparent, and resilient conductor material is needed.

Professor Il Jeon of Pusan National University, Korea, elaborates, "Unlike merely flexible electronics, foldable devices are subject to much harsher deformations, with folding radii as small as 0.5 mm. This is not possible with conventional ultra-thin glass substrates and metal oxide transparent conductors, which can be made flexible but never fully foldable."

Fortunately, an international team of researchers, including Prof. Jeon, have found a solution, in a study published in Advanced Science. They identified a promising candidate to answer all of these requirements: single-walled carbon nanotube (SWNT) films, owing to their high transparency and mechanical resilience.

The only problem is that SWNTs struggle to adhere to the substrate surface when force is applied (such as bending) and requires chemical doping. To address this problem, the scientists embedded the conducting layer into a polyimide (PI) substrate, filling the void spaces in the nanotubes.

To ensure maximum performance, they also "doped" the resulting material to increase its conductivity. By introducing small impurities (in this case, withdrawn electrons to molybdenum oxide) into the SWNT-PI nanocomposite layer, the energy needed for electrons to move across the structure is much smaller, and hence more charge can be generated for a given amount of current.

Their resulting prototype far exceeded the team's expectations. Only 7 micrometers thick, the composite film exhibited exceptional resistance to bending, almost 80% transparency, and a power conversion efficiency of 15.2%, the most ever achieved in solar cells using carbon nanotube conductors! In fact, as pointed out by Prof. Jeon, "The obtained results are some of the best among those reported thus far for flexible solar cells, both in terms efficiency and mechanical stability."

With this novel breakthrough in solar harvesting technology, one can only imagine what next-generation solar panels will look like.

Research Report: Foldable Perovskite Solar Cells Using Carbon Nanotube-Embedded Ultrathin Polyimide Conductor


Related Links
Pusan National University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Rolling Meadows site now home to Northrop Grumman's largest on-site solar energy system
Rolling Meadows IL (SPX) Feb 10, 2021
Northrop Grumman Corporation's Rolling Meadows site is now host to a new rooftop solar power-generating system, joining the company's other solar power initiatives in Florida, California and Virginia. The Rolling Meadows solar panel system is the largest on-site solar energy installation at a Northrop Grumman facility to date. "With the installation of this new solar panel system, Northrop Grumman is supporting the state of Illinois as it expands its renewable energy use and is taking another mean ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Russian cosmonauts to test new shielding material for radiation protection

Coca-Cola to sell soda in 100% recycled plastic in US

Electronic Arts buys mobile game maker Glu for $2.1 bn

MDA extends satellite operations capability through contract award by the Canadian Space Agency

SOLAR DAILY
Northrop Grumman gets $3.6B for work on Air Force communications node

Skynet 6A passes Preliminary Design Review

Northrop Grumman lands $325M deal for Air Force JSTARS sustainment

ThinKom completes Over-the-Air tests with K/Q-Band antenna on protected comms satellite

SOLAR DAILY
SOLAR DAILY
Beidou satellite helps with shared electric bikes

China publishes technical requirements for key civilian BDS products

EDMO Distributors signs distribution agreement with AvMap Satellite Navigation

Carbon-coated thread could be used to track movement in real time

SOLAR DAILY
Intruder throws spotlight on US Air Force security woes

Smaller is better for jet engines

Mammals are getting hit by airplanes at greater rates than ever before

F-15EX completes first flight in St. Louis

SOLAR DAILY
General Motors lengthens plant shutdowns amid chip shortage

Scientists optimized technology for production of optical materials for microelectronics

'Quantum brain' promises more eco-friendly data centers

Liquid machine-learning system adapts to changing conditions

SOLAR DAILY
MDA announces RADARSAT-2 continuity mission

Aeolus shines a light on polar vortex

A fine-grained view of dust storms

Drone and landsat imagery shows long-term change in vegetation cover along intermittent river

SOLAR DAILY
Toxic mine leaves poisoned legacy in French town

Meet 'baby' Claire, explorer of Antwerp's bad air

UK supermarkets caught in plastic packaging: study

Air pollution linked to irreversible sight loss: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.