Subscribe free to our newsletters via your
. Space Industry and Business News .




NANO TECH
New technique uses electrons to map nanoparticle atomic structures
by Staff Writers
Upton NY (SPX) May 07, 2012


Illustration only.

With dimensions measuring billionths of a meter, nanoparticles are way too small to see with the naked eye. Yet it is becoming possible for today's scientists not only to see them, but also to look inside at how the atoms are arranged in three dimensions using a technique called nanocrystallography.

Trouble is, the powerful machines that make this possible, such as x-ray synchrotrons, are only available at a handful of facilities around the world. The U.S. Department of Energy's Brookhaven National Laboratory is one of them - home to the National Synchrotron Light Source (NSLS) and future NSLS-II, where scientists are using very bright, intense x-ray beams to explore the small-scale structure of new materials for energy applications, medicine, and more.

But a Brookhaven/Columbia Engineering School team of scientists, in collaboration with researchers at DOE's Argonne National Laboratory (ANL) and Northwestern University, has also been working to develop nanocrystallography techniques that can be used in more ordinary science settings.

They have shown how a powerful method called atomic pair distribution function (PDF) analysis - which normally requires synchrotron x-rays or neutrons to discern the atomic arrangements in nanoparticles - can be carried out using a transmission electron microscope (TEM) - an instrument found in many chemistry and materials science laboratories.

The researchers describe the TEM-based data-collection technique and computer-modeling analyses used to extract quantitative nanostructural information in a paper just published in the May 2012 issue of the journal Zeitschrift fur Kristallographie.

"The ability to collect PDF data using an electron microscope places this powerful nanocrystallographic analysis method into the hands of scientists who need it most - the people synthesizing novel nanoparticles and nanostructures," said Simon Billinge, a researcher at both Brookhaven and Columbia University's School of Engineering and Applied Science and a long-term user of the NSLS, who led the research.

"State-of-the-art experiments will still be carried out at x-ray synchrotrons and high-tech neutron-scattering facilities," said Billinge, a professor of Materials Science and Applied Physics and Applied Mathematics at Columbia Engineering.

"But this new development removes significant barriers to more widespread use of the method, potentially making PDF part of the standard toolkit in materials synthesis labs. It's rather like moving nanocrystallography from being available only with a prescription to being available over the counter," he said.

In both the synchrotron and TEM-based methods, the essential technique is the same: bombard a sample with a beam - x-rays, in the case of a synchrotron, or electrons at a TEM - and measure how the rays/particles interact with and bounce off the atoms in the sample.

The result is a diffraction pattern that can be translated into measurements of the distribution of distances between pairs of particles within a given volume - the atomic pair distribution function (PDF). Scientists then use computational programs to convert the PDFs into 3-D models of atomic structure.

Electron diffraction had been used to study the structure of molecules in the gas phase and amorphous thin films, but initially, scientists didn't think that electrons would be appropriate for obtaining reliable PDFs from critical nanocrystalline materials because, unlike x-ray photons, electrons scatter strongly, distorting the diffraction pattern.

This new work demonstrates that, under the right circumstances and with the correct data processing, quantitatively reliable PDFs of small nanoparticles - precisely the ones that are difficult to characterize using standard methods - can be obtained with the TEM.

Another advantage is that the technique allows analysis of atomic-level structural arrangements using the same tool already used to obtain low- and high-resolution images and chemical information for nanostructures - that is, the same TEM can be used to provide complementary kinds of information.

"The fact that the real-space images and the diffraction data suitable for structural analysis can be obtained at the same time from the same region of a material results in more complete information for the characterization of the sample," said Milinda Abeykoon, a postdoctoral researcher at Brookhaven and the first author of the paper.

In the current study, scientists working with co-author Mercouri Kanatzidis at Northwestern University and ANL synthesized nanocrystalline thin films and gold and sodium chloride (NaCl) nanoparticles and used a TEM at Northwestern to acquire PDFs of these samples. The Brookhaven/Columbia group studied similar samples using synchrotron x-rays at NSLS, and analyzed all the data before comparing the resulting PDFs and atomic structures.

The PDFs from the x-ray and electron data were highly similar.

"In some cases the strong electron scattering did introduce some distortions in the PDF, as originally feared," Billinge said. "However, surprisingly these problems only affected certain less important structural parameters - and even resulted in an enhancement of the signal in a way that may be used in the future to yield a higher resolution measurement. That was an unexpected gift!"

The research team is continuing to look for ways to remove barriers to data processing to make the method more straightforward - and move it from proof-of-principle concept into widespread standard use.

Scientific paper: "Quantitative nanostructure characterization using atomic pair distribution functions obtained from laboratory electron microscopes".

.


Related Links
DOE/Brookhaven Nationala Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Next-Generation Nanoelectronics: A Decade of Progress, Coming Advances
Evanston IL (SPX) May 08, 2012
Traditional silicon-based integrated circuits are found in many applications, from large data servers to cars to cell phones. Their widespread integration is due in part to the semiconductor industry's ability to continue to deliver reliable and scalable performance for decades. However, while silicon-based circuits continue to shrink in size in the relentless pursuit of Moore's Law - the ... read more


NANO TECH
Life-size, 3D hologram-like telepods may revolutionize videoconferencing

Fewer toxic toys and textiles in EU stores

Colors burst into contemporary architecture

Flying 3D eye-bots

NANO TECH
Second AEHF Military Communications Satellite Launched

Fourth Boeing-built WGS Satellite Accepted by USAF

Raytheon to Continue Supporting Coalition Forces' Information-Sharing Computer Network

Northrop Grumman Wins Contract for USAF Command and Control Modernization Program

NANO TECH
SpaceX boss admits sleep elusive before ISS launch

Air Force launches 2nd advanced satellite

A trio of Ariane 5 launchers are now at the Spaceport

United Launch Alliance Urges IAM Members to Vote in Favor of New Contract

NANO TECH
Next Galileo satellites to launch after the summer

Czech Republic approves EU Galileo agency move to Prague

China launches two navigation satellites

Astrium built Galileo satellites fit and fully operational in orbit

NANO TECH
Migratory locusts in a wind tunnel

Australia warning over smouldering iPhone incident

China Eastern to buy 20 Boeing 777-300s

JAL could go public again in July 2012: report

NANO TECH
Fast, low-power, all-optical switch

SK Hynix pulls out of bid for Japan's Elpida

Electric charge disorder: A key to biological order?

With new design, bulk semiconductor proves it can take the heat

NANO TECH
Spotlight on Sentinel-2

GeoEye Proposes Acquisition Of DigitalGlobe

Report warns of rapid decline in US Earth observation capabilities

Lockheed Martin Completes Key Integration Milestone on GeoEye-2

NANO TECH
China says shuts Coke plant after chlorine reports

China's economic growth has pollution cost

Scientists find higher concentrations of heavy metals in post-oil spill oysters from Gulf of Mexico

Green-glowing fish provides new insights into health impacts of pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement