Subscribe free to our newsletters via your
. Space Industry and Business News .




ENERGY TECH
New technique to improve quality control of lithium-ion batteries
by Emil Venere Purdue News
West Lafayette IN (SPX) May 14, 2013


This thermal image was recorded using a new tool developed at Purdue that detects flaws in lithium-ion batteries as they are being manufactured, a step toward reducing defects and inconsistencies in the thickness of electrodes that affect battery life and reliability. (Purdue University image).

Researchers have created a new tool to detect flaws in lithium-ion batteries as they are being manufactured, a step toward reducing defects and inconsistencies in the thickness of electrodes that affect battery life and reliability.

The electrodes, called anodes and cathodes, are the building blocks of powerful battery arrays like those used in electric and hybrid vehicles. They are copper on one side and coated with a black compound to store lithium on the other. Lithium ions travel from the anode to the cathode while the battery is being charged and in the reverse direction when discharging energy.

The material expands as lithium ions travel into it, and this expansion and contraction causes mechanical stresses that can eventually damage a battery and reduce its lifetime, said Douglas Adams, Kenninger Professor of Mechanical Engineering and director of the Purdue Center for Systems Integrity.

The coating is a complex mixture of carbon, particulates that store lithium, chemical binders and carbon black. The quality of the electrodes depends on this "battery paint" being applied with uniform composition and thickness.

"A key challenge is to be able to rapidly and accurately sense the quality of the battery paint," said James Caruthers, Reilly Professor of Chemical Engineering and co-inventor of the new sensing technology.

The Purdue researchers have developed a system that uses a flashbulb-like heat source and a thermal camera to read how heat travels through the electrodes. The "flash thermography measurement" takes less than a second and reveals differences in thickness and composition.

"This technique represents a practical quality-control method for lithium-ion batteries," Adams said. "The ultimate aim is to improve the reliability of these batteries."

Findings are detailed in a research paper being presented during the 2013 annual meeting of the Society for Experimental Mechanics, which is June 3-5 in Lombard, Ill. The paper was written by doctoral students Nathan Sharp, Peter O'Regan, Anand David and Mark Suchomel, and Adams and Caruthers.

The method uses a flashing xenon bulb to heat the copper side of the electrode, and an infrared camera reads the heat signature on the black side, producing a thermal image.

The researchers found that the viscous compound is sometimes spread unevenly, producing a wavelike pattern of streaks that could impact performance. Findings show the technology also is able to detect subtle differences in the ratio of carbon black to the polymer binder, which could be useful in quality control.

The technique also has revealed various flaws, such as scratches and air bubbles, as well as contaminants and differences in thickness, factors that could affect battery performance and reliability.

"We showed that we can sense these differences in thickness by looking at the differences in temperature," Adams said.

"When there is a thickness difference of 4 percent, we saw a 4.8 percent rise in temperature from one part of the electrode to another. For 10 percent, the temperature was 9.2 percent higher, and for 17 percent it was 19.2 percent higher."

The thermal imaging process is ideal for a manufacturing line because it is fast and accurate and can detect flaws prior to the assembly of the anode and cathodes into a working battery.

"For example, if I see a difference in temperature of more than 1 degree, I can flag that electrode right on the manufacturing floor," Adams said. "The real benefit, we think, is not just finding flaws but also being able to fix them on the spot."

Purdue has applied for a patent on the technique. Lithium-ion Battery Electrode Inspection Using Flash Thermography Nathan Sharp, Douglas Adams, James Caruthers, Peter O'Regan, Anand David, Mark Suchomel

.


Related Links
Purdue Center for Systems Integrity
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Improving materials that convert heat to electricity and vice-versa
Ann Arbor MI (SPX) May 07, 2013
Thermoelectric materials can be used to turn waste heat into electricity or to provide refrigeration without any liquid coolants, and a research team from the University of Michigan has found a way to nearly double the efficiency of a particular class of them that's made with organic semiconductors. Organic semiconductors are carbon-rich compounds that are relatively cheap, abundant, light ... read more


ENERGY TECH
Heady mathematics

Cornstarch proves to be worth its weight in gold

One order of steel; hold the greenhouse gases

Cloud computing is silver lining for Russian firms

ENERGY TECH
Department of Defense looking to allow Apple, Samsung devices

DARPA Seeks Clean-Slate Ideas For Mobile Ad Hoc Networks

Astrium's secure milsatcoms now cover the world

Gilat to Equip IDF with SatTrooper-1000 Military Manpack

ENERGY TECH
NASA Awards Contract to Modify Mobile Launcher

Angara Rocket Launch Delayed to 2014

ESA's Vega launcher scores new success with Proba-V

European Vega rocket launch delayed due to weather

ENERGY TECH
Facebook eyes $1bn deal for GPS app Waze

Orbcomm Signs Seven New Customers In Transportation And Logistics Industry

Turn your satnav idea into business

NIST demonstrates transfer of ultraprecise time signals over a wireless optical channel

ENERGY TECH
EADS posts profit leap as Airbus orders soar

EADS says Pentagon ending helicopter program

Boeing Brings B-52 into Digital Age with Significant Communications Upgrade

Flyers don't turn off phones in planes: survey

ENERGY TECH
New magnetic graphene may revolutionize electronics

Flawed Diamonds Promise Sensory Perfection

Scientists develop device for portable, ultra-precise clocks and quantum sensors

Quantum optics with microwaves

ENERGY TECH
ESA's next Earth Explorer satellite Will Map The Tropics

Landsat Thermal Sensor Lights Up from Volcano's Heat

Scaling up gyroscopes: From navigation to measuring the Earth's rotation

NASA Opens New Era in Measuring Western US Snowpack

ENERGY TECH
PCBs are everywhere

Nations agree to phase out toxic chemical HBCD

Toxic waste sites cause healthy years of life lost

Progress in introducing cleaner cook stoves for billions of people worldwide




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement