Space Industry and Business News  
STELLAR CHEMISTRY
New technique more precisely determines the ages of stars
by Staff Writers
Daytona Beach FL (SPX) Jan 15, 2019

Embry-Riddle researchers used data captured by the Gaia satellite (shown here in an artist's impression) to determine the ages of stars.

How old are each of the stars in our roughly 13-billion-year-old galaxy? A new technique for understanding the star-forming history of the Milky Way in unprecedented detail makes it possible to determine the ages of stars at least two times more precisely than conventional methods, Embry-Riddle Aeronautical University researchers reported Jan. 10 at the American Astronomical Society (AAS) meeting.

Current star-dating techniques, based on assessments of stars in the prime or main sequence of their lives that have begun to die after exhausting their hydrogen, offer a 20-percent, or at best a 10-percent margin of error, explained Embry-Riddle Physics and Astronomy Professor Dr. Ted von Hippel. Embry-Riddle's approach, leveraging burnt-out remnants called white dwarf stars, reduces the margin of error to 5 percent or even 3 percent, he said.

For this method to work, von Hippel and his team must measure the star's surface temperature, whether it has a hydrogen or helium atmosphere, and its mass. The surface temperature can be determined from a star's color and atmospheric constituents.

"The star's mass matters because objects with greater mass have more energy and take longer to cool," said von Hippel, director of Embry-Riddle's Physical Sciences Department Observatory and 1.0-meter Ritchey-Chretien telescope.

"This is why a cup of coffee stays hot longer than a teaspoon of coffee. Surface temperature, like spent coals in a campfire that's gone out, offer clues to how long ago the fire died. Finally, knowing whether there is hydrogen or helium at the surface is important because helium radiates heat away from the star more readily than hydrogen."

Determining the precise masses of stars, particularly for large samples of white dwarfs, is very difficult. Now, astronomers have a new method to determine white dwarf masses.

The method takes advantage of data captured by the European Space Agency's Gaia satellite, an ambitious mission to create a three-dimensional map of the Milky Way. Von Hippel, with recent Embry-Riddle graduate Adam Moss, current students Isabelle Kloc, Jimmy Sargent and Natalie Moticksa, and instructor Elliot Robinson, used highly precise Gaia measurements of the distance of stars.

Just as a car's speedometer may appear to give two different readings from the driver's perspective versus the passenger's seat, celestial objects can appear to be in different locations, depending upon the viewer's vantage point.

The Gaia measurements, based on the geometry of two different lines of site or "parallaxes" to objects, helped Embry-Riddle researchers determine the radius of stars based on their brightness. They could then use existing information on the star's mass-to-radius ratio - a calculation driven by the physical behavior of electrons - to fill in the last ingredient for determining the age of the star, its mass.

Finally, by figuring out the abundance of different elements within the star, or its metallicity, researchers can further refine the age of the object, Moss and Kloc reported in two separate AAS poster presentations. Moss focused on pairs of stars with one white dwarf and one main sequence star similar to our Sun, while Kloc's research looked at two white dwarf stars in the same binary system.

"The next level of study will be to determine as many of the elements in the periodic table as possible for the main sequence star within these pairs," von Hippel said. "That would tell us more about Galactic chemical evolution, based on how different elements built up over time as stars formed in our galaxy, the Milky Way."

Though he emphasized that the current work remains preliminary, the team ultimately hopes to publish the ages of all white dwarf stars within the Gaia dataset: "That could allow researchers to significantly advance our understanding of star-formation within the Milky Way."

Within the field of archaeology, von Hippel noted, carbon-dating methods made it possible to determine the age of structures, fossils, Stone Age sites and much more, thereby providing deeper insights into the evolution of life on Earth. "For today's astronomers, without knowing the age of different components of our galaxy, we don't have context. We've had techniques for dating celestial objects, but not precisely."


Related Links
Embry-Riddle Aeronautical University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Thousands of stars turning into crystals
Warwick UK (SPX) Jan 10, 2019
The first direct evidence of white dwarf stars solidifying into crystals has been discovered by astronomers at the University of Warwick, and our skies are filled with them. Observations have revealed that dead remnants of stars like our Sun, called white dwarfs, have a core of solid oxygen and carbon due to a phase transition during their lifecycle similar to water turning into ice but at much higher temperatures. This could make them potentially billions of years older than previously thought. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
New technique offers rapid assessment of radiation exposure

Competition for Young Space Entrepreneurs launched

Northrop Grumman to support U.S. Army's Starlite radar system

Holographic color printing for optical security

STELLAR CHEMISTRY
Honeywell and GetSAT win multi-million dollar deal with US Government

Hughes to supply BGAN terminals for Space and Naval Warfare Systems Center

Hughes India and Sterlite Tech enable Satcom connectivity for Indian navy

DARPA awards 6 teams during final Spectrum Collaboration Challenge Qualifier

STELLAR CHEMISTRY
STELLAR CHEMISTRY
GPS-denied navigation on small unmanned helicopters

China's BeiDou officially goes global

First GPS III satellite launched, moving toward operational orbit

First Lockheed Martin-built GPS 3 satellite responding to commands

STELLAR CHEMISTRY
US objections stop Croatia buying Israeli fighter jets: minister

Britain declares it's F-35B fighters are ready for combat

Air Force accepts first KC-46A Pegasus tanker

Air Force conducts first F-35 test flight led by female pilot

STELLAR CHEMISTRY
More stable light comes from intentionally 'squashed' quantum dots

Arbitrary quantum channel simulation for a superconducting qubit

Saving energy by taking a close look inside transistors

Machine learning and quantum mechanics team up to understand water at the atomic level

STELLAR CHEMISTRY
Satellite images reveal global poverty

New nanosatellite system captures better imagery at lower cost

Declining particulate pollution led to increased ozone pollution in China

China launches six Yunhai-2 satellites for atmospheric environment research

STELLAR CHEMISTRY
Safer mining practices reduce hazardous exposures in small-scale mining in Nigeria

NUS study finds that severe air pollution affects the productivity of workers

Plant hedges help curb roadside pollution

Microplastics and plastic additives discovered in ascidians all along Israel's coastline









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.