Space Industry and Business News  
IRON AND ICE
New technique enables mineral ID of precious Antarctic micrometeorites
by Staff Writers
Tokyo, Japan (SPX) Jul 29, 2020

A tiny fragment of an ordinary chondrite (Antarctic meteorite), Yamato-86051, classified into H4, measured by the present Gandolfi X-ray diffraction method. Back scattered electron image (NIPR).

The composition of Antarctic micrometeorites and other tiny but precious rocks such as those from space missions - is really hard to analyze without some sample loss. But a new technique should make it easier, cheaper and faster to characterize them while preserving more of the sample. The findings were published on the peer reviewed journal Meteoritics and Planetary Science on May 21.

Some 40,000 tons of micrometeorites, less than a millimeter in diameter, bombard the earth every year. Analyzing the composition of this type of cosmic dust can potentially reveal many secrets about the evolution of our solar system.

They land everywhere on the planet, but we can't tell them apart from regular dust. Antarctic micrometeorites (AMMs) are special because this cleaner environment makes them easier to distinguish - but because Antarctica is such a remote and challenging place, AMM samples are very precious.

One of the main techniques used to identify the composition of a material, X-ray diffraction, mainly depends upon the use of X-rays produced at laboratories with synchrotrons, a type of particle accelerator, which is expensive and not always convenient.

This method is also challenging if, as is common in the case of AMMs, researchers only have a very small sample of the material needed to be investigated and want to avoid significant sample loss.

However, researchers with Japan's National Institute of Polar Research have now applied a different - and actually quite old - technique to such objects, which opens up the opportunity of much more convenient and cheaper identification of them than has previously been available, while also conserving more of the sample.

In the late 1960s, a Gandolfi x-ray diffraction camera that could rotate on two axes began to be used within X-ray crystallography, the experimental science of investigating materials via determining the molecular structure of the crystals many materials are made out of.

"There are a handful of different X-ray diffraction techniques, including using a vacuum tube that converts electrical energy into X-rays," says Naoya Imae Ph.D., a researcher who worked on applying the Gandolfi x-ray diffraction method to micro-samples, "but a Gandolfi set-up is just much easier to use and much faster."

Until now, the Gandolfi set-up had not been widely used for identification of micrometeorites.

The researchers attached a Gandolfi system to an X-ray diffractometer that had recently been delivered to the National Institute of Polar Research, and tested their set-up on very small rock samples (0.2-0.8 mm) that contained olivine and pyroxene, two minerals that are important for the identification of rocky meteorites.

The set up worked best with rock samples in the form of powders rather than "bulk" agglomerations of grains of mineral crystals.

With the test on known rock samples proven to be successful, the researchers now want to apply the technique on actual AMMs and samples taken by the Hayabusa 2 mission from near-Earth asteroid 162173 Ryugu expected to return to Earth later this year.


Related Links
Research Organization Of Information And Systems
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
An origin story for a family of oddball meteorites
Boston MA (SPX) Jul 27, 2020
Most meteorites that have landed on Earth are fragments of planetesimals, the very earliest protoplanetary bodies in the solar system. Scientists have thought that these primordial bodies either completely melted early in their history or remained as piles of unmelted rubble. But a family of meteorites has befuddled researchers since its discovery in the 1960s. The diverse fragments, found all over the world, seem to have broken off from the same primordial body, and yet the makeup of these meteor ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Scientists discover how deep-sea, ultra-black fish disappear

Microsoft sees growth amid pandemic computing demands

Coronavirus boon for Poland's vibrant gaming sector

Loft Orbital selects LeoStella to supply satellites for Space Infrastructure-as-a-Service

IRON AND ICE
South Korea's first military satellite launched

Alion to provide support to USAF for spectrum management

SpaceX launches South Korean communications satellite

Airbus signs contract with UK Ministry of Defence for Skynet 6A satellite

IRON AND ICE
IRON AND ICE
BeiDou adopted in unmanned farm machines in Xinjiang

Honeywell expands navigation options for precise data in areas without GPS

SMC contracts for Joint Modernized GPS Handheld Device across multiple suppliers

GPS isn't just for road trips anymore

IRON AND ICE
NASA Mission Will Study the Cosmos With a Stratospheric Balloon

First French fighter jets head to India after purchase

DARPA awards contracts for new X-Plane program based on active flow control

China to hit Lockheed Martin with sanctions over Taiwan deal

IRON AND ICE
DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

A new path for electron optics in solid-state systems

Dutch chip tech maker ASML resists virus to post growth

Testing for success with OmegA

IRON AND ICE
Reduction in commercial flights due to COVID-19 leading to less accurate weather forecasts

Decadal predictability of North Atlantic blocking and the NAO

Earth's vibrations quieted during COVID-19 lockdowns

A Walk Through the Rainbow with PACE

IRON AND ICE
Sri Lanka court blocks president's sand mining concessions

Trump's EPA not changing ozone standards set by Obama administration

Russia launches probe into 'orange' Urals streams

Body of missing environmentalist found in Honduras









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.