Space Industry and Business News  
TECTONICS
New study shows the inner core oscillates
by Staff Writers
Los Angeles CA (SPX) Jun 13, 2022

USC researchers identified a six-year cycle of super- and sub-rotation in the Earth's inner core, contradicting previously accepted models that suggested it consistently rotates at a faster rate than the planet's surface.

USC scientists have found evidence that the Earth's inner core oscillates, contradicting previously accepted models that suggested it consistently rotates at a faster rate than the planet's surface.

Their study, published in Science Advances, shows that the inner core changed direction in the six-year period from 1969-74, according to the analysis of seismic data. The scientists say their model of inner core movement also explains the variation in the length of day, which has been shown to oscillate persistently for the past several decades.

"From our findings, we can see the Earth's surface shifts compared to its inner core, as people have asserted for 20 years," said John E. Vidale, co-author of the study and Dean's Professor of Earth Sciences at USC Dornsife College of Letters, Arts and Sciences. "However, our latest observations show that the inner core spun slightly slower from 1969-71 and then moved the other direction from 1971-74. We also note that the length of day grew and shrank as would be predicted.

"The coincidence of those two observations makes oscillation the likely interpretation."

Analysis of atomic tests pinpoints rotation rate and direction
Our understanding of the inner core has expanded dramatically in the past 30 years. The inner core - a hot, dense ball of solid iron the size of Pluto - has been shown to move and/or change over decades. It's also impossible to observe directly, meaning researchers struggle through indirect measurements to explain the pattern, speed and cause of the movement and changes.

Research published in 1996 was the first to propose the inner core rotates faster than the rest of the planet - also known as super-rotation - at roughly 1 degree per year. Subsequent findings from Vidale reinforced the idea that the inner core super-rotates, albeit at a slower rate.

Utilizing data from the Large Aperture Seismic Array (LASA), a U.S. Air Force facility in Montana, researcher Wei Wang and Vidale found the inner core rotated slower than previously predicted, approximately 0.1 degrees per year. The study analyzed waves generated from Soviet underground nuclear bomb tests from 1971-74 in the Arctic archipelago Novaya Zemlya using a novel beamforming technique developed by Vidale.

The new findings emerged when Wang and Vidale applied the same methodology to a pair of earlier atomic tests beneath Amchitka Island at the tip of the Alaskan archipelago - Milrow in 1969 and Cannikin in 1971. Measuring the compressional waves resulting from the nuclear explosions, they discovered the inner core had reversed direction, sub-rotating at least a tenth of a degree per year.

This latest study marked the first time the well-known six-year oscillation had been indicated through direct seismological observation.

"The idea the inner core oscillates was a model that was out there, but the community has been split on whether it was viable," Vidale says. "We went into this expecting to see the same rotation direction and rate in the earlier pair of atomic tests, but instead we saw the opposite. We were quite surprised to find that it was moving in the other direction."

Future research to dig deeper into why inner core formed
Vidale and Wang both noted future research would depend on finding sufficiently precise observations to compare against these results. By using seismological data from atomic tests in previous studies, they have been able to pinpoint the exact location and time of the very simple seismic event, says Wang. However, the Montana LASA closed in 1978 and the era of U.S. underground atomic testing is over, meaning that the researchers would need to rely on comparatively imprecise earthquake data, even with recent advances in instrumentation.

The study does support the speculation that the inner core oscillates based on variations in the length of day - plus or minus 0.2 seconds over six years - and geomagnetic fields, both of which match the theory in both amplitude and phase. Vidale says the findings provide a compelling theory for many questions posed by the research community.

"The inner core is not fixed - it's moving under our feet, and it seems to going back and forth a couple of kilometers every six years," Vidale said. "One of the questions we tried to answer is, does the inner core progressively move or is it mostly locked compared to everything else in the long term? We're trying to understand how the inner core formed and how it moves over time - this is an important step in better understanding this process."

Research Report:Seismological observation of Earth's oscillating inner core


Related Links
University of Southern California
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECTONICS
The link between temperature, dehydration and tectonic tremors in Alaska
Kobe, Japan (SPX) Jun 03, 2022
A Kobe University research group has shed light on how low-frequency tectonic tremors occur; these findings will contribute towards better predictions of future megathrust earthquakes. In addition to the subducting Pacific plate, the Alaska subduction zone is also characterized by a subducting oceanic plateau called the Yakutat terrane. Low-frequency tectonic tremors, which are a type of slow earthquake, have only been detected in the subducted Yakutat terrane area. However, the mechanism by which ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Irvine scientists observe effects of heat in materials with atomic resolution

Recovering rare-earth elements from e-waste

Superworms capable of munching through plastic waste

Meta's Quest VR gear to let people 'hang out' in fake worlds

TECTONICS
SmartSat buys EOS Space Systems to advance its CHORUS tactical satellite terminals

COFFEE program jump-starts integrable filtering for wideband superiority

MINC Program Aims to Enable Critical Data Flow Even in Contested Environments

Dutch researchers teleport quantum information across rudimentary quantum network

TECTONICS
TECTONICS
Astrocast acquires Hiber, accelerates OEM strategy.

Volunteers watching the skies for the weather and stars

EUSPA celebrates its first 365 days of new Galileo operations

Xona passes critical testing milestone as private GNSS readies for launch

TECTONICS
MIT unveils new Wright Brothers Wind Tunnel

Urban canyons prolong sonic booms in cities

Many pathways can lead to climate-neutral air transport

One dead after fighter jet crashes into homes in central China

TECTONICS
A quantum drum that stores quantum states for record-long times

Engineers build LEGO-like artificial intelligence chip

Thermal insulation for quantum technologies

The way of water: Making advanced electronics with H2O

TECTONICS
Clouds played an important role in the history of climate

Update on NASA's TROPICS-1 Mission

Updating our understanding of Earth's architecture

The consequences of climate change in the Alps are visible from space

TECTONICS
Polluted air cuts global life expectancy by two years

'My apartment vibrates': New Yorkers fight noisy helicopter rides

Air pollution may increase freezing rain in the Northern Hemisphere

UN crowd-funds to prevent oil spill disaster off Yemen









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.