Subscribe free to our newsletters via your
. Space Industry and Business News .




INTERN DAILY
New simple setup for X-ray phase contrast
by Staff Writers
Munich, Germany (SPX) Jul 14, 2014


The intensity "landscape" of the scrambled X-rays has a multitude of random bright and dark spots called speckles. These speckles are here rendered as the height of a surface. A sample placed in the beam changes slightly the position, height and depth of the hills and valleys of this landscape. These changes are analyzed to form the images of the sample. Image courtesy I. Zanette and TUM.

X-ray phase-contrast imaging can provide high-quality images of objects with lower radiation dose. But until now these images have been hard to obtain and required special X-ray sources whose properties are typically only found at large particle accelerator facilities.

Using a laboratory source with unprecedented brightness, scientists from the Technische Universitat Munchen (TUM), the Royal Institute of Technology in Stockholm (KTH) and University College London (UCL) have demonstrated a new approach to get reliable phase contrast with an extremely simple setup.

X-ray phase-contrast imaging is a method that uses the refraction of X-rays through a specimen instead of attenuation resulting from absorption. The images produced with this method are often of much higher quality than those based on absorption.

The scientists in the team of Prof. Franz Pfeiffer are particularly interested in developing new approaches for biomedical X-ray imaging and therapy - including X-ray phase-contrast imaging. One main goal is to make this method available for clinical applications such as diagnosis of cancer or osteoporosis in the future.

In their new study, the scientists have now developed an extremely simple setup to produce X-ray phase-contrast images. The solution to many of their difficulties may seem counter-intuitive: Scramble the X-rays to give them a random structure.

These speckles, as they are called in the field, encode a wealth of information on the sample as they travel through it. The scrambled X-rays are collected with a high-resolution X-ray camera, and the information is then extracted in a post-measurement analysis step.

High accuracy and new X-ray source Using their new technique, the researchers have demonstrated the efficiency and versatility of their approach. "From a single measurement, we obtain an attenuation image, the phase image, but also a dark-field image," explains Dr. Irene Zanette, lead author of the publication.

"The phase image can be used to measure accurately the specimen's projected thickness. The dark-field image can be just as important because it maps structures in the specimen too small to be resolved, such as cracks or fibers in materials," she adds.

The source's high brightness is also key to these results. "In the source we used a liquid metal jet as the X-ray-producing target instead of the solid targets normally used in laboratory X-ray sources," says Tunhe Zhou from KTH Stockholm, project partner of the TUM.

"This makes it possible to gain the high intensity needed for phase-contrast imaging without damaging the X-ray-producing target." To obtain all images at once, an algorithm scans the speckles and analyzes the minute changes in their shape and position caused by the specimen.

But not all components of the new instrument are products of the latest cutting-edge technology. To scramble the X-rays, "we have found that a simple piece of sandpaper did the job perfectly well," adds Dr. Zanette.

The researchers are already working toward the next steps. "As a single-shot technique, speckle imaging is a perfect candidate for an efficient extension to phase-contrast tomography, which would give a three-dimensional insight into the microstructure of the investigated object," Zanette explains.

I. Zanette, T. Zhou, A. Burvall, U. Lundstrom, D. H. Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M. Hertz. Speckle-based X-ray Phase-contrast and Dark-Field Imaging with a Laboratory Source. Phys. Rev. Lett., 2014. DOI: 10.1103/PhysRevLett.112.253903

.


Related Links
Technische Universitat Munchen (TUM)
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





INTERN DAILY
'Nanojuice' could improve how doctors examine the gut
Buffalo NY (SPX) Jul 09, 2014
Located deep in the human gut, the small intestine is not easy to examine. X-rays, MRIs and ultrasound images provide snapshots but each suffers limitations. Help is on the way. University at Buffalo researchers are developing a new imaging technique involving nanoparticles suspended in liquid to form "nanojuice" that patients would drink. Upon reaching the small intestine, doctors would s ... read more


INTERN DAILY
Speeding up data storage by a thousand times with 'spin current'

A million times better

With 'ribbons' of graphene, width matters

Interlayer distance in graphite oxide gradually changes when water is added

INTERN DAILY
Thales enhancing communications of EU peacekeepers

Exelis enhancing communications for NATO country

Chemring integrates new system with Resolve

Northrop Grumman Receives Funding for Electronic Warfare Systems for US Army and Navy

INTERN DAILY
Eco-Friendly 'Angara' Rocket Installed On Plesetsk Launch Pad

Final ATV loaded with cargo after integration on Ariane 5

Singapore launches its first nano-satellite

NASA's sounding rocket crashes into Atlantic

INTERN DAILY
US Refusal to Host Russian Navigation Stations Political

China's domestic navigation system accesses ASEAN market

Soyuz Rocket puts Russian GLONASS-M navigation satellite into orbit

Russia may join forces with China to compete with US, European satnavs

INTERN DAILY
China's own dreamliner prepares for takeoff

US F-35's debut at British air show in doubt

Hague pushes Eurofighter on India visit

Northrop Grumman received new order for E-2D aircraft

INTERN DAILY
Move Over, Silicon, There's a New Circuit in Town

Swell new sensors

Ultra-thin wires for quantum computing

Quantum computation: Fragile yet error-free

INTERN DAILY
Taking NASA-USGS's Landsat 8 to the Beach

Tips from space give long-range warning of flood risk

ENSO and the Indian Monsoon...not as straightforward as you'd think

Norway Gets TerraSAR-X Direct Receiving Station

INTERN DAILY
Rising concern about 'microplastics' in the ocean

China arms itself for difficult 'war on pollution'

IBM to work to curb China pollution

China sets up specialised pollution tribunal




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.