Space Industry and Business News  
ENERGY TECH
New scalable method resolves materials joining in solid-state batteries
by Staff Writers
Oak Ridge TN (SPX) Nov 12, 2021

ORNL scientists developed a scalable, low-cost electrochemical pulse method to improve the contact between layers of materials in solid-state batteries, resolving one of the key challenges in the development of energy-dense solid-state batteries.

Scientists at the Department of Energy's Oak Ridge National Laboratory have developed a scalable, low-cost method to improve the joining of materials in solid-state batteries, resolving one of the big challenges in the commercial development of safe, long-lived energy storage systems.

Solid-state batteries incorporate a safer, fast-charging architecture featuring a solid-state electrolyte versus the liquid electrolytes in today's lithium-ion batteries. A successful solid-state commercial battery system could provide at least two times the energy density of lithium-ion batteries in a much smaller footprint. The system would enable electric vehicles with vastly improved driving range, for instance.

One of the challenges in manufacturing solid-state batteries is the difficulty of getting materials to properly join and remain stable during repeated cycles of charging and discharging. Scientists studying methods in a lab to overcome this characteristic, called contact impedance, have so far focused on applying high pressures and other methods. But that process can lead to shorting and would need to be re-applied periodically to extend the battery's life using an expensive aftermarket application.

The electrochemical pulse the ORNL researchers used eliminates the voids that form when joining layers of lithium metal anode material with a solid electrolyte material: in this case the ceramic garnet-type electrolyte LALZO (Li6.25Al0.25La3Zr2O12). Applying short, high-voltage pulses led to increased contact at the interface of the materials while resulting in no detrimental effects, as detailed in ACS Energy Letters.

The non-destructive, low-cost pulsing method results in a local heat-generating current that surrounds the lithium metal-encased voids and causes them to dissipate. The team repeated experiments and advanced characterization of the materials, which revealed the battery components did not degrade after applying the pulsing method. This approach could be scaled to allow the solid-state battery to be removed and refreshed, bringing it back to nearly the original capacity.

"This method will enable an all-solid-state architecture without applying an extrinsic force that can damage the cell and is not practical to deploy during the battery's usage," said Ilias Belharouak, co-lead on the project and head of the Electrification Section at ORNL. "In the process we've developed, the battery can be manufactured as normal and then a pulse can be applied to rejuvenate and refresh the interface if the battery becomes fatigued."

The idea for the method came from previous work in which ORNL battery researchers used electrochemical pulses to heal damaging dendrites that can form in solid electrolytes.

The research is ongoing, including experiments with more advanced electrolyte materials. ORNL's multidisciplinary energy storage team is also working to scale up its breakthroughs to a working-scale solid-state battery system.

"Sometimes the things you see developed at the laboratory scale don't end up working well together when you put them into cell architecture," Belharouak said. "At ORNL, we try to build practicality into our work, using our deep bench of scientists and engineers to address the science gaps across scales for an approach that can be readily adopted by industry."

Other scientists who worked on the project include co-lead Ruhul Amin, Marm Dixit, Rachid Essehli, Charl Jafta and David L. Wood, III of ORNL, and Anand Parejiya, a graduate student at the Bredesen Center for Interdisciplinary Education at the University of Tennessee, Knoxville.

Research Report: "Improving Contact Impedance via Electrochemical Pulses Applied to Lithium-Solid Electrolyte Interface in Solid-State Batteries"


Related Links
Oak Ridge National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Large-scale synthesis methods for single-atom catalysts for alkaline fuel cells
Seoul, South Korea (SPX) Nov 12, 2021
Alkaline fuel cells (AFC) convert the chemical energy of hydrogen and oxygen into electrical energy, while only producing water as a by-product. This makes them an extremely attractive next generation, environmentally friendly energy source. Although platinum catalysts are generally employed in alkaline fuel cells, they are expensive and also experience challenges related to stability when used in alkaline fuel cells. As a result, single-atom catalysts (SACs), as formed on carbon supports, are bec ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Facebook whistleblower 'extremely concerned' by metaverse as deals worth billions emerge

China's Tencent buys Japanese game designer: report

Extracting high-quality magnesium sulphate from seawater desalination brine

Nuclear radiation used to transmit digital data wirelessly

ENERGY TECH
Isotropic Systems and SES redefine global satellite services with first-ever multi-orbit field tests

France launches state-of-art military communications satellite

Space Systems Command awards $46.5 million contract for meshONE-Terrestrial

Cesiumastro deploys active phased array experimental satellites

ENERGY TECH
ENERGY TECH
China and Africa will strengthen cooperation on Beidou satellite system

A lab in the sky: Physics experiment in Earth's atmosphere could help improve GPS performance

BeiDou-based monitoring system in operation at world's highest dam

Technologies and concepts for the satellite navigation systems of the future

ENERGY TECH
Steady need for new planes despite pandemic: Airbus

Airbus and its partners demonstrate how sharing the skies can save airlines fuel and reduce CO2 emissions

Eagles collaborate in unique high-altitude simulation training

EU's 'green' chief challenged over private jet trips

ENERGY TECH
New algorithms advance the computing power of early-stage quantum computers

Why the world needs a better LED light bulb

Adding sound to quantum simulations

Chip maker TSMC, Sony partner on new $7 bn plant in Japan

ENERGY TECH
Warming temperatures increasingly alter structure of atmosphere

Space data helping Earth adapt to challenges of climate change

NASA, USGS release first Landsat 9 images

NASA selects new mission to study storms, impacts on climate models

ENERGY TECH
Emission reductions from pandemic had unexpected effects on atmosphere

Tunisia city on strike after landfill protest death

Tunisian dies after inhaling tear gas at landfill protest

Pandemic has led to 8.4M tons of excess plastic waste, researchers estimate









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.