Space Industry and Business News  
EARTH OBSERVATION
New satellite method enables undersea estimates from space
by Staff Writers
East Boothbay ME (SPX) Apr 06, 2018

File image of RV Roger Revelle.

Bigelow Laboratory for Ocean Sciences researchers have developed a statistical method to quantify important ocean measurements from satellite data, publishing their findings in the journal Global Biogeochemical Cycles. The study was made available online in December 2017, ahead of publication in January 2018.

Their research remedies a problem that has plagued scientists for decades: ocean-observing satellites are incredibly powerful tools, but they can only "see" the surface layer of the ocean, leaving most of its depths out of reach.

The new method makes it possible to quantify six types of particles that are key to understanding ocean dynamics and ocean-atmosphere interactions. Scientists have long used ocean color remote sensing to measure these particles in surface waters, and now, they will be able to reliably calculate concentrations of these particles through the water column. These calculations will provide data about the first 100 meters of ocean water, or to the depth where light levels dim to about 1 percent of the brightness at the surface.

One important algae quantified by this new technique are the coccolithophores, ocean plants that surround themselves with reflective chalk plates that, en masse, can cause entire ocean basins to reflect more light when they "bloom."

The effects of these microscopic coccolithophores are far-reaching: they influence biogeochemistry, global carbon cycling, and global microbial ecology. The carbon they produce when building their chalk plates even helps buffer the increasing acidity in the ocean caused by excess carbon dioxide in the atmosphere.

"It hit me that we've been calculating chlorophyll profiles from surface measurements for more than thirty years, but we don't know what the depth profiles of other biogeochemically-important materials look like," said Barney Balch, a senior research scientist at Bigelow Laboratory and lead author on the paper.

The researchers also studied variables related to other ocean plant groups, like diatoms, which build glass shells that carry carbon to the deep sea, sequestering it from the atmosphere. Understanding carbon cycling is essential to understanding present and future changes to global climate.

The effort to answer such huge questions was similarly great. Balch and his co-authors used data from 19 cruises, gathered from more than 1,300 locations in all of the world's oceans. From this vast dataset, they calculated the concentrations of six biogeochemically-relevant particles in the sunlit portion of the ocean.

"It's just a simple question, but it required a large global dataset to answer," Balch said. "The results provide new oceanographic insights into the ecology and biogeochemistry of these important algae and particles, and they make satellites an even more powerful tool for describing the entire illuminated depths of the ocean."

Research paper


Related Links
Bigelow Laboratory for Ocean Sciences
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
The saga of India's remote sensing satellite network
New Delhi, India (SPX) Mar 29, 2018
IRS-1A, the first of the series of indigenous state-of-art operating remote sensing satellites, was successfully launched into a polar sun-synchronous orbit on March 17, 1988 from the Soviet Cosmodrome at Baikonur. The successful launch of IRS-1A was one of the proudest moments for the entire country, which depicted the maturity of satellite to address the various requirements for managing natural resources of the nation. Its LISS-I had a spatial resolution of 72.5 meters with a swath of 148 km on ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Mars mission: how increasing levels of space radiation may halt human visitors

Point Nemo, Earth's watery graveyard for spacecraft

JFSCC tracks Tiangong-1's reentry over the Pacific Ocean

Laser beam traps long-lived sound waves in crystalline solids

EARTH OBSERVATION
Indian scientists lose contact with satellite

Russian Soyuz launches military satellite

India Struggling to Establish Lost Link With Crucial Communication Satellite

India set to launch S-Band satellite for military communications

EARTH OBSERVATION
EARTH OBSERVATION
China sends twin BeiDou-3 navigation satellites into space

Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

Why Russia is one step ahead of US Army's plans for future GPS

EARTH OBSERVATION
US to sell European allies $4.7bn in military aircraft

Navy taps Lockheed Martin for more F-35 support

NASA X-Plane construction set to begin

Pilot dies in Myanmar military plane crash

EARTH OBSERVATION
The future of photonics using quantum dots

China tightens rules on transferring tech know-how

Toshiba awaits regulator approval for key chip unit sale

Intel says chips addressing flaws set for release this year

EARTH OBSERVATION
China receives data from three Gaofen-1 satellites

The Viking, the dragon and the god of thunder

The saga of India's remote sensing satellite network

Taking the Pulse of Greenhouse Gases

EARTH OBSERVATION
Trump's environment chief faces intensifying scrutiny

Walden Pond, once pristine, now polluted: study

Russia landfill protest town on 'high alert'

UK plans plastic bottle charge to tackle pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.