Space Industry and Business News  
CARBON WORLDS
New research unveils graphene 'moth eyes' to power future smart technologies
by Staff Writers
Surrey, UK (SPX) Mar 04, 2016


Solar cells operate by absorbing light first, then converting it into electricity. The most efficient cells needs to do this absorption within a very narrow region of the solar cell material. The narrower this region, the better the cell efficiency. The ability to strongly absorb light by these structures could pave the roadmap to higher cell efficiencies. Image courtesy University of Surrey. For a larger version of this image please go here.

New research published in Science Advances has shown how graphene can be manipulated to create the most light-absorbent material for its weight, to date. This nanometre-thin material will enable future applications such as 'smart wallpaper' that could generate electricity from waste light or heat, and power a host of applications within the growing 'internet of things'.

Using a technique known as nanotexturing, which involves growing graphene around a textured metallic surface, researchers from the University of Surrey's Advanced Technology Institute took inspiration from nature to create ultra-thin graphene sheets designed to more effectively capture light. Just one atom thick, graphene is very strong but traditionally inefficient at light absorption. To combat this, the team used the nano-patterning to localise light into the narrow spaces between the textured surface, enhancing the amount of light absorbed by the material by about 90%.

"Nature has evolved simple yet powerful adaptations, from which we have taken inspiration in order to answer challenges of future technologies," explained Professor Ravi Silva, Head of the Advanced Technology Institute.

"Moths' eyes have microscopic patterning that allows them to see in the dimmest conditions. These work by channelling light towards the middle of the eye, with the added benefit of eliminating reflections, which would otherwise alert predators of their location. We have used the same technique to make an amazingly thin, efficient, light-absorbent material by patterning graphene in a similar fashion."

Graphene has already been noted for its remarkable electrical conductivity and mechanical strength. Professor Ravi's team understood that for graphene's potential to be realised as material for future applications, it should also harness light and heat effectively.

Professor Silva commented: "Solar cells coated with this material would be able to harvest very dim light. Installed indoors, as part of future 'smart wallpaper' or 'smart windows', this material could generate electricity from waste light or heat, powering a numerous array of smart applications. New types of sensors and energy harvesters connected through the Internet of Things would also benefit from this type of coating."

Dr Jose Anguita of the University of Surrey and lead author of the paper commented: "As a result of its thinness, graphene is only able to absorb a small percentage of the light that falls on it. For this reason, it is not suitable for the kinds of optoelectronic technologies our 'smart' future will demand."

"Nanotexturing graphene has the effect of channelling the light into the narrow spaces between nanostructures, thereby enhancing the amount of light absorbed by the material. It is now possible to observe strong light absorption from even nanometre-thin films. Typically a graphene sheet would have 2-3% light absorption. Using this method, our ultrathin coating of nanotextured few-layer graphene absorbs 95% of incident light across a broad spectrum, from the UV to the infrared."

Professor Ravi Silva noted: "The next step is to incorporate this material in a variety of existing and emerging technologies. We are very excited about the potential to exploit this material in existing optical devices for performance enhancement, whilst looking towards new applications. Through Surrey's EPSRC funded Graphene Centre, we are looking for industry partners to exploit this technology and are keen to hear from innovative companies who we can explore the future applications of this technology with us."

The Surrey team developed this technology in cooperation with BAE Systems for infrared imaging in opto-MEMs devices.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Surrey
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Graphene slides smoothly across gold
Basel, Switzerland (SPX) Mar 02, 2016
Graphene, a modified form of carbon, offers versatile potential for use in coating machine components and in the field of electronic switches. An international team of researchers led by physicists at the University of Basel have been studying the lubricity of this material on the nanometer scale. Since it produces almost no friction at all, it could drastically reduce energy loss in machines wh ... read more


CARBON WORLDS
Bone research could yield stronger synthetic materials

New catalyst makes hydrogen peroxide accessible to developing world

Research demonstrates that air data can be used to reconstruct radiological releases

California researchers reveal how to hack a 3D printer

CARBON WORLDS
US Army Pacific exercise highlights joint communications for Pacific Theater

ViaSat tapped to provide tactical terminals for Apache helicopters

Harris wins place on military communications contract

General Dynamics MUOS-Manpack radio supports government testing of MUOS network

CARBON WORLDS
At last second, SpaceX delays satellite launch again

Arianespace Soyuz to launch 2 Galileo satellites in May

SpaceX postpones rocket launch again

Russian rocket engines ban could leave US space program in limbo

CARBON WORLDS
Europe speeds up launches for sat-nav system

NASA Contributes to Global Navigation Standard Update

Sea level mapped from space with GPS reflections

Wirepas launches a dedicated connectivity product for beacons

CARBON WORLDS
Airbus starts work on new China facility

Learn how to fly a plane from expert-pilot brainwave patterns

Fresh rally against French airport plans

Mozambique debris likely same model plane as MH370: Malaysia

CARBON WORLDS
Demystifying mechanotransduction ion channels

World's first parallel computer based on biomolecular motors

Topological insulators: Magnetism is not causing loss of conductivity

Chipmaker Marvell pays $750 to settle patent suit

CARBON WORLDS
Third Sentinel satellite launched for Copernicus

Sentinel-3A poised for liftoff

New Satellite-Based Maps to Aid in Climate Forecasts

Consistency of Earth's magnetic field history surprises scientists

CARBON WORLDS
Mountaintop mining, crop irrigation can damage water biodiversity

China environment film smashes box office records

New bacterial pump could be used to remove cesium from the environment by light

Cameroon football great Milla giving plastic waste the red card









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.