Space Industry and Business News  
TECH SPACE
New polymer films conduct heat instead of trapping it
by Staff Writers
Washington DC (SPX) May 01, 2019

By mixing polymer powder in solution to generate a film that they then stretched, MIT researchers have changed polyethylene's microstructure, from spaghetti-like clumps of molecular chains (left), to straighter strands (right), allowing heat to conduct through the polymer, better than most metals.

Polymers are usually the go-to material for thermal insulation. Think of a silicone oven mitt, or a Styrofoam coffee cup, both manufactured from polymer materials that are excellent at trapping heat.

Now MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat - an ability normally associated with metals. In experiments, they found the films, which are thinner than plastic wrap, conduct heat better than many metals, including steel and ceramic.

The team's results, published in the journal Nature Communications, may spur the development of polymer insulators as lightweight, flexible, and corrosion-resistant alternatives to traditional metal heat conductors, for applications ranging from heat dissipating materials in laptops and cellphones, to cooling elements in cars and refrigerators.

"We think this result is a step to stimulate the field," says Gang Chen, the Carl Richard Soderberg Professor of Power Engineering at MIT, and a senior co-author on the paper. "Our bigger vision is, these properties of polymers can create new applications and perhaps new industries, and may replace metals as heat exchangers."

Chen's co-authors include lead author Yanfei Xu, along with Daniel Kraemer, Bai Song, Jiawei Zhou, James Loomis, Jianjian Wang, Migda Li, Hadi Ghasemi, Xiaopeng Huang, and Xiaobo Li from MIT, and Zhang Jiang of Argonne National Laboratory.

In 2010, the team reported success in fabricating thin fibers of polyethylene that were 300 times more thermally conductive than normal polyethylene, and about as conductive as most metals. Their results, published in Nature Nanotechnology, drew the attention of various industries, including manufacturers of heat exchangers, computer core processors, and even race cars.

It soon became clear that, in order for polymer conductors to work for any of these applications, the materials would have to be scaled up from ultrathin fibers (a single fiber measured one-hundredth of the diameter of a human hair) to more manageable films.

"At that time we said, rather than a single fiber, we can try to make a sheet," Chen says. "It turns out it was a very arduous process."

The researchers not only had to come up with a way to fabricate heat-conducting sheets of polymer, but they also had to custom-build an apparatus to test the material's heat conduction, as well as develop computer codes to analyze images of the material's microscopic structures.

In the end, the team was able to fabricate thin films of conducting polymer, starting with a commercial polyethylene powder. Normally, the microscopic structure of polyethylene and most polymers resembles a spaghetti-like tangle of molecular chains. Heat has a difficult time flowing through this jumbled mess, which explains a polymer's intrinsic insulating properties.

Xu and her colleagues looked for ways to untangle polyethylene's molecular knots, to form parallel chains along which heat can better conduct. To do this, they dissolved polyethylene powder in a solution that prompted the coiled chains to expand and untangle. A custom-built flow system further untangled the molecular chains, and spit out the solution onto a liquid-nitrogen-cooled plate to form a thick film, which was then placed on a roll-to-roll drawing machine that heated and stretched the film until it was thinner than plastic wrap.

The team then built an apparatus to test the film's heat conduction. While most polymers conduct heat at around 0.1 to 0.5 watts per meter per kelvin, Xu found the new polyethylene film measured around 60 watts per meter per kelvin. (Diamond, the best heat-conducting material, comes in at around 2,000 watts per meter per kelvin, while ceramic measures about 30, and steel, around 15.) As it turns out, the team's film is two orders of magnitude more thermally conductive than most polymers, and also more conductive than steel and ceramics.

To understand why these engineered polyethylene films have such an unusually high thermal conductivity, the team conducted X-ray scattering experiments at the U.S. Department of Energy's Advanced Photon Source (APS) at the Argonne National Laboratory.

"These experiments, at one of the world's most bright synchrotron X-ray facilities, allow us to see the nanoscopic details within the individual fibers that make up the stretched film," Jiang says.

By imaging the ultrathin films, the researchers observed that the films exhibiting better heat conduction consisted of nanofibers with less randomly coiled chains, versus those in common polymers, which resemble tangled spaghetti. Their observations could help researchers engineer polymer microstructures to efficiently conduct heat.

"This dream work came true in the end," Xu says.

Going forward, the researchers are looking for ways to make even better polymer heat conductors, by both adjusting the fabrication process and experimenting with different types of polymers.

Zhou points out that the team's polyethylene film conducts heat only along the length of the fibers that make up the film. Such a unidirectional heat conductor could be useful in carrying heat away in a specified direction, inside devices such as laptops and other electronics. But ideally, he says the film should dissipate heat more effectively in any direction.

"If we have an isotropic polymer with good heat conductivity, then we can easily blend this material into a composite, and we can potentially replace a lot of conductive materials," Zhou says. "So we're looking into better heat conduction in all three dimensions."

Research Report: "Nanostructured polymer films with metal-like thermal conductivity"


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Scientists develop low-cost energy-efficient materials
Moscow, Russia (SPX) Apr 24, 2019
An international team of scientists from the National University of Science and Technology "MISIS" (NUST MISIS), Tianjin University (China), as well as from Japan and the United States has developed new energy-efficient iron-based alloys which combine high mechanical and magnetic properties with low cost and open up new opportunities for industry. The research results are published in the Journal of Alloys and Compounds. Today, scientists from different countries are facing the task of creating ne ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Squid skin inspires creation of next-generation space blanket

Coffee machine helped physicists to make ion traps more efficient

New polymer films conduct heat instead of trapping it

Making glass more clear

TECH SPACE
Boeing awarded $605M for Air Force's 11th WGS comms satellite

SLAC develops novel compact antenna for communicating where radios fail

US Army selects Hughes for cooperative effort to upgrades NextGen Friendly Forces System

United Launch Alliance launches WGS-10 satellite for USAF

TECH SPACE
TECH SPACE
China launches new BeiDou satellite

Industry collaboration on avionics paves the way for GAINS navigation demonstration flights

Record-Breaking Satellite Advances NASA's Exploration of High-Altitude GPS

China, Arab states eye closer cooperation on satellite navigation to build "Space Silk Road"

TECH SPACE
Heathrow campaigners lose court case against expansion

State Department approves new deal with Taiwan for F-16s

Lockheed Martin awarded $117.1M contract for F-35 parts

Lockheed Martin cuts ribbon on South Carolina F-16 production line

TECH SPACE
HKUST physicist contributes to new record of quantum memory efficiency

Bridge over coupled waters: Scientists 3D-print all-liquid 'lab on a chip'

New robust device may scale up quantum tech, researchers say

Nanocomponent is a quantum leap for Danish physicists

TECH SPACE
Greek researchers enlist EU satellite against Aegean sea litter

Arianespace to launch "SAR" satellite StriX-a aboard Vega for Japanese startup company Synspective

Geomagnetic jerks finally reproduced and explained

How NASA Earth Data Aids America, State by State

TECH SPACE
China plastic waste ban throws global recycling into chaos

USAID launches latest clean-up for Vietnam War-era Agent Orange site

Philippines' Duterte in war of words over Canada garbage row

Seals, caviar and oil: Caspian Sea faces pollution threat









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.