. Space Industry and Business News .




.
TECH SPACE
New nanostructure-based process will streamline production of magnetic materials
by Staff Writers
Amherst MA (SPX) Sep 29, 2011

This figure shows the block copolymer (left) and homopolymer (right) samples. The background of both figures is a transmission electron microscopy image showing that the block copolymer is made of nanoscopic domains visualized as a honeycomb pattern of cobalt-rich cylinders while the homopolymer is unstructured but contains small cobalt particles shown in black. Similar small cobalt particles are present in the block copolymer but they are not easily observed due to the nanoscopic block copolymer super-structure. The chemical structure of both polymers is also shown along with powder samples of the two materials. The block copolymer is attracted to the white magnet bar shown in the photograph while the non-magnetic homopolymer sample has no such attraction. Credit: Photo produced by Tew Research Group at the University of Massachusetts Amherst.

Scientists at the University of Massachusetts Amherst report that for the first time they have designed a much simpler method of preparing ordered magnetic materials than ever before, by coupling magnetic properties to nanostructure formation at low temperatures.

The innovative process allows them to create room-temperature ferromagnetic materials that are stable for long periods more effectively and with fewer steps than more complicated existing methods. The approach is outlined by UMass Amherst polymer scientist Gregory Tew and colleagues in the Sept. 27 issue of Nature Communications.

Tew explains that his group's signature improvement is a one-step method to generate ordered magnetic materials based on cobalt nanostructures by encoding a block copolymer with the appropriate chemical information to self-organize into nanoscopic domains. Block copolymers are made up of two or more single-polymer subunits linked by covalent chemical bonds.

The new process delivers magnetic properties to materials upon heating the sample once to a relatively low temperature, about 390 degrees (200 degrees Celsius), which transforms them into room-temperature, fully magnetic materials. Most previous processes required either much higher temperatures or more process steps to achieve the same result, which increases costs, Tew says.

He adds, "The small cobalt particles should not be magnetic at room temperature because they are too small. However, the block copolymer's nanostructure confines them locally which apparently induces stronger magnetic interactions among the particles, yielding room-temperature ferromagnetic materials that have many practical applications."

"Until now, it has not been possible to produce ordered, magnetic materials via block copolymers in a simple process," Tew says.

"Current methods require multiple steps just to generate the ordered magnetic materials. They also have limited effectiveness because they may not retain the fidelity of the ordered block copolymer, they can't confine the magnetic materials to one domain of the block copolymer, or they just don't produce strongly magnetic materials. Our process answers all these limitations."

Magnetic materials are used in everything from memory storage devices in our phones and computers to the data strips on debit and credit cards. Tew and colleagues have discovered a way to build block copolymers with the necessary chemical information to self-organize into nanoscopic structures one millionth of a millimeter thin, or about 50,000 times thinner than the average human hair.

Earlier studies have demonstrated that block copolymers can be organized over relatively large areas. What makes the UMass Amherst research group's results so intriguing, Tew says, is the possible coupling of long-range organization with improved magnetic properties.

This could translate into lower-cost development of new memory media, giant magneto-resistive devices and futuristic spintronic devices that might include "instant on" computers or computers that require much less power, he points out.

He adds, "Although work remains to be done before new data storage applications are enabled, for example making the magnets harder, our process is highly tunable and therefore amendable to incorporating different types of metal precursors. This result should be interesting to every scientist in nanotechnology because it shows conclusively that nano-confinement leds to completely new properties, in this case room temperature magnetic materials."

"Our work highlights the importance of learning how to control a material's nanostructure. We show that the nanostructure is directly related to an important and practical outcome, that is, the ability to generate room-temperature magnets."

"Our work highlights the importance of learning how to control a material's nanostructure. We show that the nanostructure is directly related to an important and practical outcome, that is, the ability to generate room temperature magnets."

As part of this study, the UMass Amherst team also demonstrated that using a block copolymer or nanoscopic material results in a material that is magnetic at room temperature. By contrast, using a homopolymer, or unstructured material, leads only to far less useful non- or partial-magnetic materials.

Related Links
University of Massachusetts at Amherst
Space Technology News - Applications and Research




 

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Nanoplasmonics And Metamaterials
Washington DC (SPX) Sep 27, 2011
Light-matter interaction at the nanometer scale has turned into a very fast-growing field of research known as nano-optics. To highlight breakthroughs in the specific areas of nano-optics known as nanoplasmonics and metamaterials, the editors of the Optical Society's (OSA) open-access journal Optical Materials Express (OMEx) have published a special Focus Issue on Nanoplasmonics and Metama ... read more


TECH SPACE
RIM says committed to PlayBook amid price cuts

Judge says Apple/Samsung ruling in Australia next week

Chemistry team produces a game-changing catalyst

Scientists and engineers create the 'perfect plastic'

TECH SPACE
Proton-M puts military purpose spacecraft into orbit

Russia launches military satellite after delay

Raytheon Fields First AEHF Satellite Communications Terminals to Tactical Units

Harris unveils new systems

TECH SPACE
Sea Launch resumes operations after 2-year break

Ariane 5 marks fifth launch for 2011

Countdown to first Soyuz launch at Kourou under way

Ariane rocket launches satellites after strike delay

TECH SPACE
Raytheon GPS OCX Completes Preliminary Design Review

Hexagon Enhances Satellite-based Positioning Solutions with Locata Local Constellation

Locata Publishes Interface Specifications and Launches New Local Constellation Concept

Locata Unveils World's First GPS-style Indoor Positioning Solution

TECH SPACE
China opposes EU's 'unilateral' airline tax plan

Boeing's first 787 Dreamliner lands in Tokyo

Airlines decry EU carbon emissions scheme

Higher airline prices loom under EU emissions scheme

TECH SPACE
New FeTRAM is promising computer memory technology

Japan's Elpida eyes chip production base in China

Like fish on waves electrons go surfing

Scientists play ping-pong with single electrons

TECH SPACE
Russia may launch its first Earth remote sensing satellite in 2012

Astrotech Subsidiary Wins Contract for NASA Mission

Japanese meteorological firm to launch satellite to track Arctic sea ice

ERS satellite missions complete after 20 years

TECH SPACE
Steep increase in global CO2 emissions despite reductions by industrialized countries

Nitrate levels rising in northwestern Pacific

China shuts lead plants on pollution fears

Mathematician fights Bucharest's 'cultural parricide'


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement