Space Industry and Business News  
ENERGY TECH
New nanomaterial can extract hydrogen fuel from seawater
by Staff Writers
Orlando FL (SPX) Oct 05, 2017


Artist's conceptualization of the hybrid nanomaterial photocatalyst that's able to generate solar energy and extract hydrogen gas from seawater.

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF researcher Yang Yang has come up with a new hybrid nanomaterial that harnesses solar energy and uses it to generate hydrogen from seawater more cheaply and efficiently than current materials.

The breakthrough could someday lead to a new source of the clean-burning fuel, ease demand for fossil fuels and boost the economy of Florida, where sunshine and seawater are abundant.

Yang, an assistant professor with joint appointments in the University of Central Florida's NanoScience Technology Center and the Department of Materials Science and Engineering, has been working on solar hydrogen splitting for nearly 10 years.

It's done using a photocatalyst - a material that spurs a chemical reaction using energy from light. When he began his research, Yang focused on using solar energy to extract hydrogen from purified water. It's a much more difficulty task with seawater; the photocatalysts needed aren't durable enough to handle its biomass and corrosive salt.

As reported in the journal Energy and Environmental Science, Yang and his research team have developed a new catalyst that's able to not only harvest a much broader spectrum of light than other materials, but also stand up to the harsh conditions found in seawater.

"We've opened a new window to splitting real water, not just purified water in a lab," Yang said. "This really works well in seawater."

Yang developed a method of fabricating a photocatalyst composed of a hybrid material. Tiny nanocavities were chemically etched onto the surface of an ultrathin film of titanium dioxide, the most common photocatalyst. Those nanocavity indentations were coated with nanoflakes of molybdenum disulfide, a two-dimensional material with the thickness of a single atom.

Typical catalysts are able to convert only a limited bandwidth of light to energy. With its new material, Yang's team is able to significantly boost the bandwidth of light that can be harvested. By controlling the density of sulfur vacancy within the nanoflakes, they can produce energy from ultraviolet-visible to near-infrared light wavelengths, making it at least twice as efficient as current photocatalysts.

"We can absorb much more solar energy from the light than the conventional material," Yang said. "Eventually, if it is commercialized, it would be good for Florida's economy. We have a lot of seawater around Florida and a lot of really good sunshine."

In many situations, producing a chemical fuel from solar energy is a better solution than producing electricity from solar panels, he said. That electricity must be used or stored in batteries, which degrade, while hydrogen gas is easily stored and transported.

Fabricating the catalyst is relatively easy and inexpensive. Yang's team is continuing its research by focusing on the best way to scale up the fabrication, and further improve its performance so it's possible to split hydrogen from wastewater.

Research paper

ENERGY TECH
Scientists harvest electricity from tears
Washington (UPI) Oct 1, 2017
Sad about the battery drain on your new smartphone? A good cry might help. Scientists have found a way to harvest electricity from tears. In recent lab experiments, researcher at the University of Limerick's Bernal Institute, in Ireland, found lysozyme crystals yield an electric current when pressurized. Lysozyme is found in tears and saliva, as well as the whites of bird eggs and the m ... read more

Related Links
University of Central Florida
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
UV-irradiated amorphous ice behaves like liquid at low temperatures

The 3-D selfie has arrived

Ultracold atoms point toward an intriguing magnetic behavior

Researchers developing new technique that uses light to separate mirrored molecules

ENERGY TECH
82nd Airborne tests in-flight communication system for paratroopers

Spectra Airbus SlingShot Partnership Extension

Airbus prepares the future European Governmental Satellite Communications programme

Northrop awarded contract for support of Air Force communications system

ENERGY TECH
ENERGY TECH
exactEarth Announces Agreement with Alltek Marine to Expand Small Vessel Tracking Service Offering

BeiDou navigation to cover Belt and Road countries by 2018

China's BeiDou-3 satellites get new chips

US Air Force Awards Lockheed Martin GPS M-Code Early Use Ground System Upgrade Contract

ENERGY TECH
Airbus opens first plane-completion centre in China

A beautiful wing design solution inspired by owl feathers

Pilot shortage plagues Air Force

Boeing to manufacture additional F/A-18s for U.S. Navy

ENERGY TECH
Head of Taiwan microchip giant TSMC set to retire

New quantum computer chip uses sounds waves to store data

Move towards 'holy grail' of computing by creation of brain-like photonic microchips

Laser can control a current in graphene within one femtosecond

ENERGY TECH
Scientists monitor Silicon Valley's underground water reserves - from space

OSIRIS-REx views Pacifica on Earth Flyby

How aerial thermal imagery is revolutionizing archaeology

A Box of 'Black Magic' to Study Earth from Space

ENERGY TECH
I.Coast toxic spill victims launch new Dutch court bid

Are plastic nanoparticles causing brain damage in fish?

The waste-collecting cyclists who caught the UN's eye

Nestle tackles 'ocean-polluter' tag in Philippines









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.