Space Industry and Business News  
TECH SPACE
New nano-barrier for composites could strengthen spacecraft payloads
by Staff Writers
Surrey UK (SPX) Dec 27, 2019

Stock image of polymer-based carbon fibre sheets

The University of Surrey has developed a robust multi-layed nano-barrier for ultra-lightweight and stable carbon fibre reinforced polymers (CFRPs) that could be used to build high precision instrument structures for future space missions.

CFRP is used in current space missions, but its applications are limited because the material absorbs moisture. This is often released as gas during a mission, causing the material to expand and affect the stability and integrity of the structure. Engineers try to minimise this problem with CFRP by performing long, expensive procedures such as drying, recalibrations and bake-out- all of which may not completely resolve the issue.

In a paper published by the journal Nature Materials, scientists and engineers from Surrey and Airbus Defence and Space detail how they have developed a multi-layered nano-barrier that bonds with the CFRP and eliminates the need for multiple bake-out stages and the controlled storage required in its unprotected state.

Surrey engineers have shown that their thin nano-barrier - measuring only sub-micrometers in thickness, compared to the tens of micrometers of current space mission coatings - is less susceptible to stress and contamination at the surface, keeping its integrity even after multiple thermal cycles.

Professor Ravi Silva, Director of the Advanced Technology Institute at the University of Surrey, said: "We are confident that the reinforced composite we have reported is a significant improvement over similar methods and materials already on the market. These encouraging results suggest that our barrier could eliminate the considerable costs and dangers associated with using carbon fibre reinforced polymers in space missions."

Christian Wilhelmi, Head of Mechanical Subsystems and Research and Technology Friedrichshafen at Airbus Defence and Space, said: "We have been using carbon-fibre composites on our spacecraft and instrument structures for many years, but the newly developed nano-barrier together with our ultra-high-modulus CFRP manufacturing capability will enable us to create the next generation of non-outgassing CFRP materials with much more dimensional stability for optics and payload support. Reaching this milestone gives us the confidence to look at instrument-scale manufacturing to fully prove the technology."

Professor David Sampson, Vice-Provost Research and Innovation at the University of Surrey, said: "This research project continues the University of Surrey's long and close partnership with Airbus. Advanced materials for spacecraft is a further excellent example of how Surrey supports the Space Sector. We have been doing so for decades, and we are fully committed to strengthening our support for the sector going forwards. I look forward to more brilliant advances from the Surrey-Airbus relationship in years to come."

Research paper


Related Links
University of Surrey
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
New aluminium hydroxide stable at extremely high pressure
Matsuyama, Japan (SPX) Dec 11, 2019
Hydrogen is the most abundant element in the universe and it plays important roles in the structure, dynamics, and evolution of the planets. Hydrogen is transported into deep mantle regions as a hydrous mineral via the subduction of oceanic plates. To better understand the global hydrogen circulation in the Earth's mantle, a number of high-pressure experiments were conducted on the stability of hydrous phases under lower mantle conditions. Recent discoveries of new high-pressure hydrous mine ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Solving the challenges of long duration space flight with 3D Printing

Calling radio amateurs: help find OPS-SAT!

New laser technique images quantum world in a trillionth of a second

OneWeb to use advanced grappling tech from Altius Space Machines

TECH SPACE
General Dynamics receives $730M for next-gen satcom system

Airbus' marks 50 years in Skynet secure satellite communications for UK

Lockheed Martin gets $3.3B contract for communications satellite work

GenDyn nets $783M for next-gen Navy MUOS operations

TECH SPACE
TECH SPACE
US Congress green lights India's NavIC as regional satellite navigation system

Russia postpones Glonass-M launch From Plesetsk over carrier problems

China launches two more BeiDou satellites for GPS system

Russia to launch glass sphere into space before new year to obtain accurate Earth data

TECH SPACE
The DFG, DLR and the Helmholtz Association enable cutting-edge research for sustainable aviation

NASA's X-59 quiet supersonic research aircraft cleared for final assembly

NASA approves final assembly for Lockheed's quiet, supersonic X-plane

Seven Hong Kong Airlines planes impounded by authority

TECH SPACE
Japan lifts curbs on export of key chip material to S. Korea

Scientists see defects in potential new semiconductor

Transistors can now both process and store information

A platform for stable quantum computing, a playground for exotic physics

TECH SPACE
China improves space-based observation of Earth

Model offers clearer understanding of factors that influence monsoon behavior

SubX shows promise for improved monthly weather forecasts

Capella awarded contract to integrate commercial SAR data for National Security

TECH SPACE
Spain river littered with dead fish after waste plant fire

Household dust hosts toxic chemicals from LCD screens

Smog forces schools shut in Iran

Bangladesh tears down brick kilns to fight toxic smog









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.