Subscribe free to our newsletters via your
. Space Industry and Business News .




ENERGY TECH
New method knocks out stubborn electron problem
by Staff Writers
Chicago IL (SPX) Jul 10, 2012


David Mazziotti, a professor in chemistry at the University of Chicago, has solved a longstanding problem in quantum theory: how to compute the energies and properties of any atom or molecule in terms of just two of its electrons. Credit: Kasra Naftchi-Ardebili.

A newly published article in Physical Review Letters eliminates one of the top unsolved theoretical problems in chemical physics as ranked by the National Research Council in 1995. Scientists now can more accurately predict the dynamic behavior of electrons in atoms and molecules in chemical reactions that govern a wide range of phenomena, including the fuel efficiency of combustion engines and the depletion of the atmospheric ozone.

The paper by David Mazziotti, professor in chemistry at the University of Chicago, solves what specialists call the "N-representability problem." Robert Erdahl, a mathematician at Queens University in Canada and a leading authority on the N-representability problem, described Mazziotti's paper as "a striking advance," "an elegant theory," and "a remarkable achievement."

Research on the theoretical foundations of the problem has advanced significantly along two important but separate lines of research for more than 60 years, Erdahl noted. "Work in both directions has proceeded independently even though it was widely understood that a unified approach was required to achieve a clear understanding. However, no one has been able to construct a theory where both paths enter in partnership. In his recent work Mazziotti has achieved precisely that."

Molecules have anywhere from tens to thousands of electrons, and the computational complexity of simulating their behavior grows exponentially with the number of strongly correlated electrons, those whose motions are statistically linked to the motions of other electrons. Mazziotti's goal was to find a way to calculate the properties of many-electron systems via a two-electron technique, where the two electrons represent the other electrons in the system.

"The two-electron models provide a platform for exploring a whole range of chemistry and physics," Mazziotti said.

"If you are calculating, let's say, the water molecule, which has 10 electrons, your two-electron model has only two of the 10 electrons," Mazziotti said. "But the probability for finding those two electrons must be consistent with the other eight electrons in the real system."

The need for these consistencies, "What we call 'representability conditions,' are the necessary conditions that you really need to do two-electron calculations of many-electron molecules," he said.

Like minds
Three scientists independently proposed the idea of a two-electron model in the 1950s. One was A. John Coleman, a mathematician at Queens University in Canada, who presented the idea at a 1951 conference at Chalk River, Canada.

Two papers appeared in the journal Physical Review in 1955 making the same point. University of Chicago physicist Joseph Mayer authored one of the papers, while University of Florida chemist Per Olov Lowdin authored the other.

The search for these conditions later became known as the N-representability problem, following the terminology that Coleman had suggested in a 1963 paper published in Reviews of Modern Physics.

"Then there was a series of international conferences that were organized to search for these conditions," Mazziotti said.

An early confidence that researchers would work out the necessary conditions within a year or two gave way to despair in the late 1960s. By then it appeared that the previously unsuspected difficulty of the representability problem presented a potentially impossible barrier.

By the time the problem had come to Mazziotti's attention as a Harvard graduate student in 1995, the field had reached its nadir. In the early 2000s he began reviving interest in the problem with his formulation of mathematical procedures for some of the known conditions, and applying them for the first time to atoms and molecules.

Over the last 10 years, Mazziotti's steadily improving, two-electron models advanced chemistry research in ways not possible with the traditional equations of quantum mechanics.

"The thing is that we used partial N-representability conditions because we didn't know all of them," Mazziotti said. "We would never use all of them anyway, but it's one thing not to use all of the constraints. It's another thing not to know what they are."

Gap plugged
Mazziotti's Physical Review Letters paper plugs that gap, making the two-electron model a powerfully complete theory for mapping many-electron systems. "We can achieve much greater accuracy in our calculations by adding some of these new conditions that we've discovered," he said. "It's exciting because it's something I've been looking for since I started thinking about this in 1995."

Coleman, who died in 2010, said years ago that what inspired him to work on the N-representability problem was not the goal of computational efficiency or additional speed. It was instead the potential for tremendous new insight into how many-electron systems really work. "Ultimately, that is the driving force in my research, too," Mazziotti said.

.


Related Links
University of Chicago
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Quantum computing, no cooling required
Boston MA (SPX) Jul 10, 2012
It's a challenge that's long been one of the holy grails of quantum computing: how to create the key building blocks known as quantum bits, or qubits, that exist in a solid-state system at room temperature. Most current systems, by comparison, rely on complex and expensive equipment designed to trap a single atom or electron in a vacuum and then cool the entire system to close to absolute zero. ... read more


ENERGY TECH
Naturally adhesive

SMOS satellite measurements improve as ground radars switch off

New technique could reduce number of animals needed to test chemical safety

Physicists find chink in the Batsuit

ENERGY TECH
Lockheed Martin Selected to Manage Major Defense Information Systems Network Operations

Lockheed Martin Selected to Deliver Major Improvements to DoD's ISR Information Sharing Capabilities

Boeing FAB-T Demonstrates Communications with On-orbit AEHF Satellite

Lockheed Martin Completes Environmental Testing on Second US Navy Satellite

ENERGY TECH
Ariane 5 ECA orbits EchoStar XVII and MSG-3

ATK Unveils Unique Liberty Capability

Avanti Announces Launch Date for HYLAS 2 Satellite

Three Pratt and Whitney Rocketdyne RS-68A Engines Power Delta IV Heavy Upgrade Vehicle on Inaugural Flight

ENERGY TECH
Announcement of ACRIDS product line for Precision Airdrop Systems

SSTL announces exactView-1 satellite launch date

Galileo pathfinder GIOVE-A retires

ESA extends its navigation lab in readiness for Galileo testing

ENERGY TECH
U.K. boosts up-armed Typhoon for Mideast

Brazil jet bid extended 6 months

Boeing predicts $4.5 trillion market for 34,000 new airplanes

Poland orders more C295s, produces helos

ENERGY TECH
Intel pumps billions into computer chip tool maker

Japan's Renesas eyes $550 mn savings, cutting 5,000 jobs

Discovery of material with amazing properties

Micron to buy troubled Japan chip-maker Elpida

ENERGY TECH
MSG-3 set to ensure quality of Europe's weather service from geostationary orbit

Images in an Instant: Suomi NPP Begins Direct Broadcast

Satellite research reveals smaller volcanoes could cool climate

NASA Satellites Examine a Powerful Summer Storm

ENERGY TECH
Chinese factories shut amid lead poisoning fears

Nitrogen pollution changing Rocky Mountain National Park vegetation

Plastic pollution reaching surprising levels off coast of Pacific Northwest

Novel clay-based coating may point the way to new generation of green flame retardants




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement