Space Industry and Business News  
TIME AND SPACE
New math bridges holography and twistor theory
by Staff Writers
Onna, Japan (SPX) Apr 06, 2018

A diagram depicting a twistor - an extended entity in space and time that can be thought of as a 2-dimensional light ray.

The modern-day theoretical physicist faces a taxing uphill climb. "As we learn more, reality becomes ever more subtle; the absolute becomes relative, the fixed becomes dynamical, the definite is laden with uncertainty," writes physicist Yasha Neiman.

A professor and head of the Quantum Gravity Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), he grapples with this conundrum on a daily basis. Quantum gravity, Neiman's branch of physics, aims to unify quantum mechanics, which describes nature at the scale of atoms and subatomic particles, with Einstein's theory of General Relativity - the modern theory of gravitation as curvature of space and time.

How, he asks, can physicists write equations when the geometry of space itself becomes subject to quantum uncertainty? Quantum gravity, the current frontier in fundamental theory, has proven more difficult to detangle than previous concepts, according to Neiman.

"With the concept of space slipping between our fingers, we seek out alternative footholds on which to base our description of the world," he writes.

This search for alternative footholds is, in essence, a search for a new language to describe reality - and it is the subject of his most recent work, published in the Journal of High Energy Physics. In the paper, Neiman proposes a new vantage point on the geometry of space and time - one that builds on well-established approaches in physics, like holography and twistor theory, to reach new ground.

Holography is an offshoot of string theory - the theory that the Universe is made up of one-dimensional objects called strings - which was developed in the late 1990s. Holography imagines the ends of the Universe as the surface of an infinitely large sphere that forms the boundary of space. Even as geometry fluctuates within this sphere, this "boundary at infinity" on the sphere's surface can remain fixed.

For the past 20 years, holography has been an invaluable tool for conducting quantum-gravity thought experiments. However, astronomical observations have shown that this approach cannot really apply to our world.

"The accelerating expansion of our Universe and the finite speed of light conspire to limit all possible observations, present or future, to a finite - though very large - region of space," Neiman writes.

In such a world, the boundary at infinity, where the holographic picture of the Universe is based, is no longer physically meaningful. A new frame of reference may be needed - one that does not attempt to find a fixed surface in space, but which leaves space behind altogether.

In the 1960s, in an attempt to understand quantum gravity, physicist Roger Penrose proposed such a radical alternative. In Penrose's twistor theory, geometric points are replaced by twistors - entities that most closely resemble stretched, light ray-like shapes. Within this twistor space, Penrose discovered a highly efficient way to represent fields that travel at the speed of light, such as electromagnetic and gravitational fields.

Reality, however, is composed of more than fields - one needs also to account for the interactions between them, such as the electric force between charges, or, in the more complicated case of General Relativity, gravitational attraction resulting from the energy of the field itself. However, including the interactions of General Relativity into this picture has proven a formidable task.

So, then, can we express in twistor language a full-fledged quantum gravitational theory, perhaps simpler than General Relativity, but with both fields and interactions fully taken into account? Yes, according to Neiman.

Neiman's model builds on higher spin gravity, a model developed by Mikhail Vasiliev in the 1980s and 90s. Higher spin gravity can be thought of as the "smaller cousin" of String Theory, "too simple to reproduce General Relativity, but very instructive as a playground for ideas," as Neiman puts it. In particular, it is perfectly suited for exploring possible bridges between holography and twistor theory.

On one hand, as discovered by Igor Klebanov and Alexander Polyakov in 2001, higher spin gravity, just like string theory, can be described holographically: its behavior within space can be captured completely in terms of a boundary at infinity. On the other hand, its equations contain twistor-like variables, even if these are still tied to particular points in ordinary space.

From these starting points, Neiman's paper takes an additional step, constructing a mathematical dictionary that ties together the languages of holography and twistor theory.

"The underlying math that makes this story tick is all about square roots," writes Neiman. "It's about identifying subtle ways in which a geometric operation, such as a rotation or reflection, can be done 'halfway'. A clever square root is like finding a crack in a solid wall, opening it in two, and revealing a new world."

Using square roots in this way has a long-standing history in math and physics. In fact, the intrinsic shape of all matter particles - such as electrons and quarks - as well as twistors, is described by a square root of ordinary directions in space. In a subtle technical sense, Neiman's method for connecting space, its boundary at infinity, and twistor space, boils down to taking such a square root again.

Neiman hopes that his proof of concept can pave the way towards a quantum theory of gravity that does not rely on a boundary at infinity.

"It will take a lot of creativity to uncover the code of the world," says Neiman. "And there's joy in fumbling around for it."

Research paper


Related Links
Okinawa Institute of Science and Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
High-sensitivity 3-D technique unveiled using single-atom measurements
Brisbane, Australia (SPX) Mar 29, 2018
Researchers at Griffith University working with Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) have unveiled a stunningly accurate technique for scientific measurements which uses a single atom as the sensor, with sensitivity down to 100 zeptoNewtons. Using highly miniaturised segmented-style Fresnel lenses - the same design used in lighthouses for more than a century - which enable exceptionally high-quality images of a single atom, the scientists have been able ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Latest Updates from NASA on IMAGE Recovery

Invisibility material created by UCI engineers

Scientists create 'Swiss army knife' for electron beams

Smart ink adds new dimensions to 3-D printing

TIME AND SPACE
India Struggling to Establish Lost Link With Crucial Communication Satellite

Indian scientists lose contact with satellite

Russian Soyuz launches military satellite

India set to launch S-Band satellite for military communications

TIME AND SPACE
TIME AND SPACE
DT Research introduces new rugged tablet with scientific-grade GNSS

China sends twin BeiDou-3 navigation satellites into space

Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

TIME AND SPACE
Fierce clashes as French police try to clear anti-capitalist camp

257 dead as military plane crashes in Algeria's worst air disaster

Boeing to advance design process for new Air Force One

Two soldiers killed in Kentucky copter crash: army

TIME AND SPACE
A new kind of quantum bits in two dimensions

Diamond-based circuits can take the heat for advanced applications

Mini toolkit for measurements: New NIST chip hints at quantum sensors of the future

Next-generation electronics one leap closer to reality

TIME AND SPACE
New satellite method enables undersea estimates from space

New source of global nitrogen discovered: Earth's bedrock

Denmark Hopeful to 'Enter Superliga' With Recent Space Project

Draining peatlands gives global rise to laughing-gas emissions

TIME AND SPACE
Agricultural fires can double Delhi pollution during peak burning season

Rivers worldwide threatened by pharma waste: studies

Philippine tourist island in chaos as shutdown looms

India's eco warriors who sent Bollywood's Khan to jail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.