Space Industry and Business News  
INTERNET SPACE
New liquid crystal could make TVs three times sharper
by Brooks Hays
Orlando, Fla. (UPI) Feb 1, 2017


disclaimer: image is for illustration purposes only

A novel blue-phase liquid crystal could bolster the resolution and energy efficiency of TVs and computer displays. Researchers designed the new crystal for use in field-sequential color liquid crystal displays, or LCDs.

"Today's Apple Retina displays have a resolution density of about 500 pixels per inch," lead researcher Shin-Tson Wu, a professor of optics and photonics at the University of Central Florida, said in a news release. "With our new technology, a resolution density of 1500 pixels per inch could be achieved on the same sized screen. This is especially attractive for virtual reality headsets or augmented reality technology, which must achieve high resolution in a small screen to look sharp when placed close to our eyes."

Current high-definition displays use a layer of nematic liquid crystal to modulate the white LED backlight. Color filters are applied to the backlight to generate red, green and blue pixels. The application of all three filters produces white light.

The new blue-phase liquid crystal can modulate light at a much faster rate than nematic liquid crystal, eliminating the need for filters. Different color pixels can be transmitted in quick succession. Rapid-fire pulses of blue, red and green light translates to white light through human eyes.

"With color filters, the red, green and blue light are all generated at the same time," explained Wu. "However, with blue-phase liquid crystal we can use one subpixel to make all three colors, but at different times. This converts space into time, a space-saving configuration of two-thirds, which triples the resolution density."

The elimination of filters reduces the amount of energy lost during light transmission, making the process more efficient.

However, use of the new crystal required a higher voltage to drive each pixel. Researchers developed a new type of film transistor with a protruded electrode structure, allowing each electric jolt to penetrate deeper into the liquid crystal.

"We achieved an operational voltage low enough to allow each pixel to be driven by a single transistor while also achieving a response time of less than 1 millisecond," added Haiwei Chen, a doctoral student in Wu's lab. "This delicate balance between operational voltage and response time is key for enabling field sequential color displays."

Now, researchers plan to translate their findings -- published in the journal Optical Materials Express -- into a working display.

"Now that we have shown that combining the blue-phase liquid crystal with the protruded electron structure is feasible, the next step is for industry to combine them into a working prototype," said Wu.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Satellite-based Internet technologies






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
New 'needle-pulse' beam pattern packs a punch
Rochester NY (SPX) Jan 31, 2017
A new beam pattern devised by University of Rochester researchers could bring unprecedented sharpness to ultrasound and radar images, burn precise holes in manufactured materials at a nano scale - even etch new properties onto their surfaces. These are just a few of the items on the "Christmas tree" of possible applications for the beam pattern that Miguel Alonso, professor of optics, and ... read more


INTERNET SPACE
New white paper reviews latest support for Redefinition of the Kilogram by 2018

A new approach to 3-D holographic displays greatly improves the image quality

UCLA physicists map the atomic structure of an alloy

Facebook's Oculus ordered pay $500 mn in suit on stolen tech

INTERNET SPACE
Flat-panel SATCOM for civilian-armored vehicles

Japan launches satellite to modernise military communications

Phasor teams with Thales to develop advanced broadband Smart Terminal

Airbus to supply French satellite communication systems

INTERNET SPACE
INTERNET SPACE
IAI debuts GPS anti-jamming system

New project to boost Sat Nav positioning accuracy anywhere in world

Russia to Construct Glonass Satellite Navigation Station in Nicaragua

Clocks 'failed' onboard Europe's navigation satellites: ESA

INTERNET SPACE
Advanced robotic bat's flight characteristics simulates the real thing

State Dept. approves $525 million aerostat sale to Saudi Arabia

Kazakhstan orders Russian Mi-35M helicopters

Nigerian air force, Comp Air Aviation to develop light utility aircraft

INTERNET SPACE
Atomic-level sensors enable measurements of electric field within a chip

The world's first heat-driven transistor

Apple legal fight with Qualcomm spreads to China

Electron movement on helium may impact the future of quantum computing

INTERNET SPACE
NASA Airborne Mission Chases Air Pollution Through the Seasons

How satellite data changed chimpanzee conservation efforts

NOAA's GOES-16 Satellite Sends First Images to Earth

NASA measures 'dust on snow' to help manage Colorado River Basin water supplies

INTERNET SPACE
Toxic mercury in aquatic life could spike with greater land runoff

Synthetic chemicals: Ignored agents of global change

How India's 'Garden City' became garbage city

Cookware made with scrap metal contaminates food









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.